
CHAPTER 1 I
N
T
R
O
D
U
C
T
I
O
N

T
O

IN T RODUCT ION T O
A V EN U E W RAPS

A
V
E
N
U
E

W
R
A
P
S

his book, Avenue Wraps, presents a set of guidelines for converting ArcView® 3.x
Avenue scripts into Microsoft's Visual Basic® and ArcObjects™ code, jointly referred
to in this book as "VB code", for incorporation into ArcGIS™ software. It is notedT

that the words "ArcObjects™ code" as used in this book represents a generic term for the use
of ArcObjects™ properties and methods in conjunction with VB code. The reason for using
Visual Basic® and not Visual C++®, or any other COM compliant software, is that the syntax of
Visual Basic® is much closer to that of Avenue, than Visual C++.

Certain of the conversion guidelines presented in this book refer to Avenue requests that have
a direct VB (subroutine or function) or ArcObjects™ counterpart. A direct counterpart implies
that the operation is generally the same in both programming environments, even though the
name may be somewhat different, and the location of the argument lists may follow rather than
precede the request. For the most part, these guidelines are presented in Chapter 2 of this book.
Speaking of terminology, the word "program" as used herein is a generic term referring to a main
line program, subroutine or function, and is considered synonymous with the Avenue word
"script", and "VB macro". Also included in Chapter 2 are the changes that need to be made to
the Avenue code that do not utilize Avenue requests, that is, the syntax of the code. For example
dealing with "for each" loops, "if" statements, intrinsic functions and so forth.

Unfortunately, there are numerous Avenue requests that do not meet the above criteria of a direct
counterpart. In order to assist an Avenue programmer to expedite the conversion of Avenue
code to VB code, various subroutines and functions have been written in Visual Basic® that
simulate the operation of what are considered to be the most common Avenue requests. The
scope and use of these subroutines and functions, jointly referred to as Avenue Wraps™ , are
presented in the subsequent chapters of this book, and a listing of each Avenue Wrap™ is
presented in Appendix D.

The use of this book assumes a knowledge of Avenue programming, and a basic knowledge,
although not extensive expertise in Visual Basic® and ArcObjects™ programming. Although
primarily intended for those planning on converting Avenue code to ArcObjects™ , certain of

1-2 Avenue Wraps

the Avenue Wraps™ contained herein will prove helpful to those that do not convert from
Avenue, but instead wish to program directly into VB code. In using this book, it is recommended
that the reader first peruse the entire book, order of chapter reading is not essential, so as to
familiarize him or her self as to the contents and the various Avenue Wraps™ .

1.1 Comments on the Declaration of Variables

An attempt has been made to make the Avenue Wraps™ as generic as possible. Each
Avenue Wrap™ description is preceded by its corresponding Avenue request, if one
exists. The use of an Avenue Wrap™ is basically a substitution of an Avenue Wrap™
for an Avenue request. The name of an Avenue Wrap™ is essentially the same as that
of the corresponding Avenue request. There are, however, two differences between
an Avenue Wrap™ and an Avenue request. The first is that the argument list, for some
Avenue Wraps™ , will differ slightly with their Avenue counterpart. The second is that,
whereas Avenue requests could be concatenated, Avenue Wraps™ cannot.

The description of each Avenue Wrap™ includes the Dim declaration statements of
its associated variables, as well as a description of each of the variables. Note that this
is a significant difference between Avenue and "VB code". Variables did not have to
be declared in Avenue, however with "VB code", variables do. Regarding the Dim
statements, the reader is alerted to the following:

• Dim statements should appear in the program that calls the subject subroutine or
function, or in a preceding program that may be calling the program that calls a
subroutine or function. For example consider a subroutine called Force being
called by subroutine BBB, which in turn is called by AAA. In this case, the Dim
statements for the variables y1, x1, y2, x2, dist, az should only appear in the
subroutine AAA. So that the declarations would look like this:

Public Sub AAA
Dim x3 As Double, y3 As Double, y1 As Double
Dim x1 As Double, y2 As Double, x2 As Double
Dim dist As Double, az As Double
... do something
Call BBB(x3, y3, y1, x1, y2, x2, dist, az)

End Sub
'
Public Sub BBB(x3, y3, y1, x1, y2, x2, dist, az)

Dim only whatever variables are local to BBB

DEC L A R A T ION
OF V ARIABL ES

It is noted that an
Avenue "list"
corresponds to a
VB "collection",
which is different
than a VB array.
In this book, the
words "list" and
"collection" are
used as meaning
the same. Where
distinction is
necessary with
regards to arrays,
it is so done.

Chapter 1 Introduction To Avenue Wraps 1-3

' ---y1, x1, y2, x2 are the given variables
' ---dist and az are the returned variables

Call Force(y1, x1, y2, x2, dist, az)
' ...do whatever with dist and az
End Sub
'
Public Sub Force(y1, x1, y2, x2, dist, az)
Dim only whatever variables are local to Force
' ... solve for dist and az
End Sub

• Regarding the Dim statement of a function itself, consider the following sample
statement, which may appear in a public sub called CCC, that uses the function
avAddDoc (an Avenue Wrap™):
theLayer = avAddDoc(aDoc)

In the text of Appendix D, in which said Avenue Wrap™ is presented, one may
get the impression when looking at the function's listing, that in addition to any
other variables in the function's argument list, the function name, avAddDoc in
this case, should be declared in the calling program as:
Dim avAddDoc As Integer

This is not the case. When a variable is set equal to a function, it is the variable
and not the function name that should appear in a Dim statement within the calling
program. In this case, in public sub CCC it is the variable theLayer that is declared
as:
Dim theLayer As Integer ' correct declaration
theLayer = avAddDoc(aDoc)

and not the function name:
Dim avAddDoc As Integer ' incorrect declaration
theLayer = avAddDoc(aDoc)

• Only declare one variable per line, unless the type is specified for each variable,
for example:
Dim opmode As Integer, xyzRecs As Integer
Dim x1 As Double, y1 As Double, z2 As Double
Dim aTitle1 As String, aTitle2 As String
If the type is not specified, the variable will default to be of Variant type, which
could result in problems if the variable is to be purely numeric in nature.

DEC L A R A T ION
OF V ARIABL ES

1-4 Avenue Wraps

These types of variables are referred to as non-object types. A variable of object
type is stored as a 32-bit (4-byte) address, which refers to an object. In addition,
objects support methods and properties. ArcObjects™ offers the programmer a
lot of different types of objects which enable the programmer to interact with the
ArcGIS™ software. The approach taken in this book, when declaring objects, is
to do so one per line, such as:
Dim pmxDoc As IMxDocument
Dim pPolygon As IPolygon
Dim graphList As New Collection
Dim theFields As New Collection

Note that, for the sake of conservation of space, in Appendix D, more than one
object may be declared on a single line.

• Certain Avenue Wraps™ utilize global variables. Unlike Avenue, where a global
variable was prefixed with the _ character, global variables in "VB code" begin with
the letters ug, and are initialized in the Avenue Wrap™ avInit, presented in Chapter
3 of this book. Global variables are used to pass information between the Avenue
Wraps™ much like a common block would be used in a Fortran program.

The variables within each Avenue Wrap™ argument list are described as to their
nature, and are classified as to being either "given" or "returned" arguments within the
subroutine or function. There are some Avenue Wraps™ that may not have given and/
or returned variables in their argument list. In such cases, the word "nothing" will
appear.

1.2 Overview of the Chapter Contents

In the subsequent chapters, Avenue Wrap™ subroutine and function names that
appear in bold type, such as avGetDisplayFlush, indicate that the complete listing of
the subroutine or function is contained in Appendix D. Subroutines or functions that
are not shown in bold type are either standard VB or ArcObjects™ code.

The available Avenue Wraps™ are presented in the chapters identified below, and
they have been grouped according to function.

◗ Chapter 2 - General Conversion Guidelines
This chapter presents (a) a set of general syntax guidelines for converting Avenue
to VB and ArcObjects™ code, (b) some Avenue Wraps™ , and (c) addresses the
syntax concerning the following:

DEC L A R A T ION
OF V ARIABL ES

Chapter 1 Introduction To Avenue Wraps 1-5

• Numbers and arithmetic operations,
• String manipulation,
• Transcendental and other functions,
• Querying and testing variables,
• Lists, arrays and collections, and
• Program flow control such as Do and For loops.
• Data type declaration including a summary table of how various types of

variables, views, theme and table names, message box contents, and the like
should be declared (dimmed).

◗ Chapter 3 - Project Organization Avenue Wraps™
This chapter contains Avenue Wraps™ that are associated with the establish-
ment of an ArcView® project and its views, or are of a general application nature.

◗ Chapter 4 - File I/O Avenue Wraps™
This chapter addresses Avenue Wraps™ that are concerned with the opening and
closing of files, reading of files, writing to files, and other file handling operations
including the extraction of data from delimited files.

◗ Chapter 5 - Theme and Table Avenue Wraps™
This chapter contains Avenue Wraps™ pertaining to the handling of themes and
their tables including:
• Theme and table creation and retrieval,
• Querying, editing and summarizing tables, and
• Performing calculations on table cells.

◗ Chapter 6 - Feature Selection Avenue Wraps™
This chapter is comprised of various Avenue Wraps™ that help create and
manipulate selection sets from various groups of features or rows.

◗ Chapter 7 - Message and Menu Box Avenue Wraps™
This chapter is comprised of the Avenue Wraps™ that help create boxes with
messages to the user, or present the user questions for action, provision for input
of data, and/or selection from predefined lists.

◗ Chapter 8 - Geometric Routines Avenue Wraps™
This chapter contains Avenue Wraps™ that enable the programmer to perform
various geometric operations such as creating points, line, circles, and polygons,
and extracting information thereof.

OV ERV IEW OF
C H AP TER

CON T E N T S

1-6 Avenue Wraps

◗ Chapter 9- User Document Interaction
This chapter contains various subroutines and functions that facilitate the
graphic interaction ("making picks") between the user and ArcMap™ .

◗ Chapter 10 - Graphics and Symbols Avenue Wraps™
This chapter contains Avenue Wraps™ that enable the programmer to manipulate
graphics, assign attributes and symbology, and create and work with graphic text.

◗ Chapter 11 - Classification and Legends
This chapter contains various subroutines and functions with which the program-
mer may classify layers, create legends, and work with symbol palettes.

◗ Chapter 12 - Utility Macros
This chapter provides two subroutines that assist the programmer to (a) mass
export VBA code to a specified directory, and (b) import or load VBA code from
a specified directory into the current ArcMap™ project. This chapter also
contains various subroutines and functions which are used by certain Avenue
Wraps™ transparently to the programmer. In addition, these subroutines and
functions may be used in the development of individual code to carry out certain
geometric and other operations.

◗ Appendices
A Palette Index Values

In this appendix, the programmer will find the various symbol index values for
each of the 17 standard ArcMap™ palettes.

B Color Calibration Diagrams
In this appendix, the calibration charts for the gray scale, CMYK color model,
HSV color model and RGB color model will be found.

C Table of Avenue Request to Avenue Wrap™ Macro Mapping
The table of this appendix summarizes in alphabetical order the most common
Avenue requests and VB or ArcObjects statements, most of which are
individually discussed in this book, and identifies the corresponding Avenue
Wrap™ and location of its discussion by chapter and section.

D Avenue Wrap™ Macro Listing
In this appendix, the complete listing of the various Avenue Wrap™ scripts
is presented in alphabetical script name order.

OV ERV IEW OF
C H AP TER
CON T E N T S

Chapter 1 Introduction To Avenue Wraps 1-7

1.3 Getting Started

1.3.1 General Commentary

So we are now ready to start converting Avenue code. Before performing any
conversion work, it is recommended that the Visual Basic Environment (VB and VBA)
and Visual Basic for Applications Development Environment sections in the
ArcObjects Developer Help be read. These sections can be found under the Contents
tab, clicking on Getting Started, followed by clicking on Getting Started Start Page, see
Figure 1-1. These are not very long sections but they provide valuable information that
helps to explain what is presented in the subsequent chapters.

The approach recommended in this book for converting Avenue code into "VB code",
is to initially perform the conversion work in the VBA, Visual Basic for Applications,
environment and then build an extension, if appropriate, in the VB, Visual Basic,
environment. The reason for doing so is that the VBA environment is similar to the
Avenue environment in that the programmer can easily test and debug the application
directly within ArcMap™ . Once the application has been tested and is ready for
distribution, the programmer can either (a) package the application as a protected

G E T T IN G
ST A R T E D

Figure 1-1 ArcObjects Developer Help

1-8 Avenue Wraps

Figure 1-2
Existing Project Browser

project file, similar to an encrypted ArcView-Avenue project file, or (b) build an
extension in the VB, Visual Basic, environment. Although there will be some
duplicitous work (i.e. creating tools, menu items, etc.), any other approach would lead
to a longer development/conversion cycle.

When an extension is to be built the programmer will be working in two different, yet
somewhat similar, environments, first VBA and secondly (once the application has
been tested) VB. It is suggested that the listings in Appendix D be reviewed, in terms
of the variable declaration statements, to see how variables should be declared so that
any re-coding can be eliminated. The point is that a programming style should be
adopted such that the code can exist in both a VBA and VB environment.

When a protected project file is to be distributed, the end user working with the
protected project file will still be able to customize the project file, but will be unable
to modify or view the customizations provided by the developer. The developer in
protecting the project file assigns a password that must be entered in order to modify
or view the customizations. If the password is not properly specified, the end user is
unable to modify or view the developer's customizations.

The following pages contain three examples of converting Avenue code into VB code.
Note that the steps that are listed are merely a suggested procedure, and are presented
here for the novice programmer who for the first time enters the development realm of
ArcMap™ and VB.

? 1 Invoke ArcMap, at which time the window of
Figure 1-2 is displayed within the window of
Figure 1-3.

? 2 Accept the default selection to create a new
empty map, and click at the OK button. The
browser window disappears.

? 3 Click at the Tools menu and then at the Mac-
ros and Visual Basic Editor sub-menus (see
Figure 1-4) to display the VBE work environ-
ment of Figure 1-5.

The VBE environment is divided into five areas, the menu and tool bars across the top,
the Project sub-window in the upper left corner, the Properties sub-window below it,
and the main work area (the large dark gray area) to the right.

G E T T IN G
ST A R T E D

Chapter 1 Introduction To Avenue Wraps 1-9

Figure 1-3 ArcMap Work Window

1.3.2 Converting an Avenue System Script

For our first conversion example we will convert the Avenue system script
View.ClearSelect.

? 4 Invoke ArcView 3.x, and load either an existing project, or create a blank
project.

? 5 Click at the Scripts icon in the Project window, and then at the New button
of said sub-window (see Figure 1-6A).

? 6 Click at the Load System Script button, , to display a list of the system
scripts, scroll down to select the View.ClearSelect script, and click at the
OK button. See Figure 1-6(B). The system script is now displayed in the new
script window. See Figure 1-6(C). The function of this script is to deselect
(clear) any selected features in the active theme within the active document.

We will now translate the above Avenue system script into VB code. Since
this script is so small, there is no need to copy it and paste it into a VBA module.

Conv erting
a n Av enue

System Scrip t

1-10 Avenue Wraps

Figure 1-4 Tools Menu and
Macros/Visual Basic Editor

Sub-Menus

If the code was larger we could use normal Windows functionality to copy
the code to the clipboard and paste it into a VBA module. Thus, we will
simply proceed to code it into VBA using the Avenue Wraps DLL. So that,

? 7 Go back to the VBE work environment of Figure 1-5, and
click at the Insert menu and then at the Module sub-menu.
Module1 is now displayed in the Properties sub-window
of Figure 1-5, and Module1 (Code) is displayed in the
work area of the same figure. This process is essentially
the same as creating a new script window in ArcView 3.x.

? 8 In the Properties sub-window of Figure 1-5,
double-click on top of the name of the module, Module1,

and replace the name by key entering the new name to be assigned to the
module, avViewClearSelectMOD, followed by depressing the Enter key. All
references to Module1 should have been changed to reflect the new module
name. The extension MOD, which appears in the module name, denotes that
the file is a module. It is not possible to have a module name that is the same
as the name of a subroutine or function.

Conv erting
a n Av enue
System Scrip t

Figure 1-5 VBE Work Environment

Chapter 1 Introduction To Avenue Wraps 1-11

As a point of clarification, scripts in Avenue are referred to as procedures,
in VB/VBA, and are stored in modules. Modules, unlike scripts, can contain
more than one procedure. The most straight forward approach is to create
a module, with a single procedure within it, for every script to be converted.

The script to be converted, in this example, is to be a public subroutine so that
it may be called by various other procedures (subroutines and functions) to
be written later on. Thus, in the VBE work environment of Figure 1-5, we will
now create a public subroutine.

? 9 Click in the title bar of the avViewClearSelectMOD window to make the
window active. Click at the Insert menu and then at the Procedure... sub-
menu. In the data field to the right of the Name: label, type avViewClearSelect
and click at the OK button. Note that under the Type and Scope frames the
default values denote a public subroutine is to be established.

The following lines of code will appear.

Public Sub avViewClearSelect()

End Sub

(B) Script Selection

(A) Blank ArcView 3.x Work Space

theView = av.GetActiveDoc
for each t in theView.GetActiveThemes
 t.ClearSelection
end

Figure 1-6 Opening an ArcView 3.x System Script

(C) The View.ClearSelect Script

Conv erting
a n Av enue

System Scrip t

1-12 Avenue Wraps

Note that there are no arguments between the two parentheses in the Public
Sub avClearSelect() line, thus indicating that this subroutine is not to have
any given, nor any returned variable arguments.

In converting the Avenue script we will utilize the Dynamically Linked Library (DLL)
implementation of the Avenue Wraps. In so doing, we eliminate the need to include
all of the Avenue Wraps source in the converted application. To incorporate the
Avenue Wraps DLL we must make a reference in the VBE work environment to the
Avenue Wraps DLL.

? 10 Click at the Tools
menu and then at the
References... sub-
menu to display the
References - Project
window (Figure 1-7).

? 11 Click at the Browse
button to display the
Add Reference file
dialog box. Then,
• Navigate to the directory in which the avwraps.dll file is located (see

Figure 1-8),
• Click at the name of the avwraps.dll file,
• Click at the Open button (Figure 1-7 is displayed again, and includes the

avwraps.dll file),
and then

• Click at the OK
button to confirm.

The avwraps.dll has
now been referenced in
the VBA application,
and all of the Avenue
Wraps are now avail-
able to the developer.

? 12 Click in front of the word Public to position the cursor and type Option
Explicit, followed by depressing the Enter key, twice. The code should look
like this:

Conv erting
a n Av enue
System Scrip t

Figure 1-7 References - Project Window

Figure 1-8 Add Reference Window

Referencing
the Avenue
Wraps
avwraps.dll
file.

Chapter 1 Introduction To Avenue Wraps 1-13

Option Explicit

Public Sub avViewClearSelect()

End Sub

The statement Option Explicit informs the VBE compiler that all variables are
to be explicitly declared. Although an optional statement, it helps tremen-
dously in the development/conversion process.

Now, click at the blank line between the second and third lines (between
Public Sub avViewClearSelect and End Sub), and key enter the statements
below. The comment statements explain the code.

'
' ---The Avenue Wrap below gets the active document.
' ---Refer to section 3.1.3 of this book.
 Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
' ---The Avenue Wrap below creates a collection of the
' ---various layers (themes) in the active document.
' ---Refer to section 3.1.4 of this book.
 Call avGetActiveThemes(pmxDoc, ThemesList)
'
' ---We will now determine the number of layers (themes) in
' ---the active document
 NumThemes = ThemesList.Count
'
' ---The Avenue Wrap below within the For Each loop will
' ---deselect the selected features in each of the themes
' ---Refer to section 6.2.2 of this book.
 For i = 1 To NumThemes
 theTheme = ThemesList.Item(i)
 Call avClearSelection(pmxDoc, theTheme)
 Next

? 13 It is now time to declare the various variables that were used in the above code.
In declaring these variables, note the following:

Conv erting
a n Av enue

System Scrip t

1-14 Avenue Wraps

• Keep in mind the comments in the previous section 1.1 that the calling
arguments (given and returned) of a subroutine or function should be
declared in the program where they were first called, not in the subroutine
or function itself. Since this subject subroutine has no given and no
returned variables, all variables used in this subroutine are considered
local and should be declared within it.

• Variables used locally in a program may be declared anywhere in the
procedure (subroutine or function), but prior to where first used. How-
ever, it may be considered more appropriate, and easier to locate if need
be, if they are all located at the beginning of the program, below the name
of the subroutine or function, and more or less, in the order of their use.

? 14 Click below the second line (Public Sub ...), and key enter the declaration
statements below.

 Dim pMxApp As IMxApplication
 Dim pmxDoc As IMxDocument
 Dim pActiveView As IActiveView
 Dim pMap As IMap
 Dim ThemesList As New Collection
 Dim NumThemes As Long, i As Long
 Dim theTheme As Variant

Writing computer code is in essence no different than writing any text, be it
fiction or a technical report. The style of the text is dependent upon the style
of the writer. There are, however, certain writing rules that are essential to any
text, such as clarity, and in the case of software code, in-line documentation
describing what is being done. There is a thinking among many, particularly
experienced programmers, that the code itself is adequate documentation;
thus, comment statements are many times sparse, if at all. No matter how good
a programmer is, the need will come some months, if not years later, when (a)
the programmer's memory may not be as good as first thought, and (b) when
program logic may not be as easily discernible. It is at this point of time, when
properly located comment statements will be more than just welcomed and
appreciated. This is not to justify the number of comment statements in the
preceding sample code. One may justifiably claim that they are verbose, and
some of them redundant. The purpose of their introduction was purely to
lucidly describe to a novice as to what is being done.

Conv erting
a n Av enue
System Scrip t

Chapter 1 Introduction To Avenue Wraps 1-15

On the issue of code clarity, it is quite important to describe at the very start
of a procedure the purpose or objective of the procedure, and identify its
given and returned variables, as well as any special conditions that may
pertain to, or required, by the program for its proper execution. If the program
is a main line program, a skeleton description of its flow may be apropos. In
the "good old days" of computer programming, a detailed flow chart was a
requirement, if not a necessity. Nowadays, a concise description in good
English, or what may be the language of the programmer, is considered
appropriate. Thus it is now time to do just that.

? 15 Click below the first line (Option Explicit), and key enter the comment
statements below. Note that comment statements can be created by using
the ' character, which may appear anywhere on a data line. Again note that
these comments are just a suggestion which the authors utilize in their
programming. Others may customize them to their specific needs and desires.

‘
‘ *
‘ * *
‘ * Name: avViewClearSelect File Name: avclears.bas *
‘ * *
‘ *
‘ * *
‘ * PURPOSE: Deselect all selected features in all layers *
' * (themes) of an active application (document) *
‘ * *
‘ * GIVEN: nothing *
‘ * *
‘ * RETURN: nothing *
‘ * *
‘ * Dim (in this area the declaration statements of the given *
‘ * and returned variables of the program would be shown *
‘ * as comments. In the subject example, since there are *
‘ * no given and returned variables, omit these comments) *
‘ * *
‘ *
‘

The complete code of the above example is contained in Table 1-1.

Conv erting
a n Av enue

System Scrip t

Note that the
p r o c e d u r e
name and the
disk file name
may be the
same, or differ-
ent. An 8.3 file
name conven-
tion is used
here.

1-16 Avenue Wraps

Conv erting
a n Av enue
System Scrip t Option Explicit

‘
‘ *
‘ * *
‘ * Name: avViewClearSelect File Name: avclears.bas *
‘ * *
‘ *
‘ * *
‘ * PURPOSE: Deselect all selected features in all layers *
' * (themes) of an active application (document) *
‘ * *
‘ * GIVEN: nothing *
‘ * *
‘ * RETURN: nothing *
‘ * *
‘ * Dim (in this area the declaration statements of the given *
' * and returned variables of the program would be shown *
' * as comments. In the subject example, since there are *
' * no given and returned variables, omit these comments) *
‘ * *
‘ *
‘

Public Sub avViewClearSelect()
'
 Dim pMxApp As IMxApplication
 Dim pmxDoc As IMxDocument
 Dim pActiveView As IActiveView
 Dim pMap As IMap
 Dim ThemesList As New Collection
 Dim NumThemes As Long, i As Long
 Dim theTheme As Variant
'
' ---The Avenue Wrap below gets the active document.
' ---Refer to section 3.1.3 of this book.
 Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
' ---The Avenue Wrap below creates a collection of the
' ---various layers (themes) in the active document.
' ---Refer to section 3.1.4 of this book.
 Call avGetActiveThemes(pmxDoc, ThemesList)
'
' ---We will now determine the number of layers (themes) in
' ---the active document
 NumThemes = ThemesList.Count
'
' ---The Avenue Wrap below within the For Each loop will
' ---deselect the selected features in each of the themes
' ---Refer to section 6.2.2 of this book.
 For i = 1 To NumThemes
 theTheme = ThemesList.Item(i)
 Call avClearSelection(pmxDoc, theTheme)
 Next
'
End Sub

Table 1-1 SAMPLE VB CODE

Chapter 1 Introduction To Avenue Wraps 1-17

1.3.3 Converting a Geometric Avenue Script

In this example, we will convert a user developed Avenue script, iccomdis, which is
supposed to be given two pairs of Cartesian coordinates and compute, and thus return,
the distance between them. The Avenue listing of this script may be found in Table
1-2. When converted, this script is to be a function and operate in the same manner
as the Avenue script. The data lines, which appear in the color red, have a VB syntax
error.

'
' *
' * *
' * Name: iccomdis File Name: iccomdis.ave *
' * *
' *
' * *
' * PURPOSE: TO COMPUTE THE DISTANCE BETWEEN TWO POINTS *
' * *
' * Given: X1,Y1 = coordinates of point 1 *
' * X2,Y2 = coordinates of point 2 *
' * *
' * Return:DIST = distance between the two points *
' * *
' *
' * *
' * SCRIPTS CALLED BY SCRIPT "iccomdis" : none *
' * *
' *
'
' ---Extract the incoming values
 X1 = SELF.Get(0)
 Y1 = SELF.Get(1)
 X2 = SELF.Get(2)
 Y2 = SELF.Get(3)
'
' ---COMPUTE DISPLACEMENTS BETWEEN POINTS
 DX = X2 - X1
 DY = Y2 - Y1
'
' ---CHECK IF POINTS ARE IDENTICAL
 IF((DX.Abs < _gTolV3) AND (DY.Abs < _gTolV3)) then
 DIST = 0.0
'
' ---HANDLE CASE OF TWO UNIQUE POINTS
 else
'
' ---COMPUTE THE DISTANCE
 DIST = ((DX*DX) + (DY*DY)).Sqrt
 end
'
' ---Return the script "iccomdis" results
 Return DIST

Table 1-2 SAMPLE AVENUE CODE

Conv erting
a G eom etric

A v enue Scrip t

1-18 Avenue Wraps

The first three steps of this conversion process for this script are the same as those
of the preceding conversion process, so that once we have entered the VBE work
environment, we will commence with Step 4.

? 4 Click at the File menu and then at the Import sub-menu of Figure 1-4. The
conventional Window file browser window is now displayed.

? 5 Navigate to the appropriate directory and select the desired file, in this
example the file is called iccomdis.ave. The contents of Table 1-2 are
displayed.

Conv erting
a G eom etric
A v enue Scrip t

Option Explicit
'
' *
' * *
' * Name: iccomdis File Name: iccomdis.bas *
' * *
' *
' * *
' * PURPOSE: TO COMPUTE THE DISTANCE BETWEEN TWO POINTS *
' * *
' * GIVEN: X1,Y1 = coordinates of the first point *
' * X2,Y2 = coordinates of the second point *
' * *
' * RETURN: iccomdis = distance between the two points *
' * *
' * Dim X1, Y1, X2, Y2, iccomdis As Double *
' * *
' *
'

Public Function iccomdis(X1, Y1, X2, Y2) As Double
'
 Dim DX As Double, DY As Double
'
' ---COMPUTE DISPLACEMENTS BETWEEN POINTS
 DX = X2 - X1
 DY = Y2 - Y1
'
' ---CHECK IF POINTS ARE IDENTICAL
 If ((Abs(DX) < ugTolV3) And (Abs(DY) < ugTolV3)) Then
 iccomdis = 0#
'
' ---HANDLE CASE OF TWO UNIQUE POINTS
 Else
'
' ---COMPUTE THE DISTANCE
 iccomdis = Sqr((DX * DX) + (DY * DY))
 End If
'
End Function

Table 1-3 SAMPLE VB CODE

Chapter 1 Introduction To Avenue Wraps 1-19

Conv erting
a G eom etric

A v enue Scrip t

Note that this is a different approach, in importing an Avenue script into a VBA module,
from what was shown in the previous example. In addition, the user will need to change
the Files of type: display, to be all files, in order to see the appropriate file(s) in the Import
File dialog box.

When importing Avenue scripts in this manner, the default name of the module will be
moduleX, where X is the next available number beginning at one. The programmer will
then have to change the name following the method described in Step 8 of the previous
example.

In general, comment lines will appear in a VBA module in the color, green. Data lines
that have a syntax error will appear in the color, red.

The comments below make reference to the converted code shown in Table 1-3.
? 6 Modify the program banner as shown at the top of Table 1.3. Note the:

• Description of the objective (purpose) of the program;
• Identification and description of the given and returned variable argu-

ments; and
• Comment declaration statements regarding the given and returned

variables.

? 7 Since this program is to return only one variable, the distance between the
two points, it will be defined as a public function.

? 8 The variables DX and DY are the only variables local to this program.

? 9 The program logic is to remain the same. Note the following:
• The change in the ending of the "If" statement loop.
• The changes in the name and location of the calling arguments of the

absolute value and square root intrinsic functions.
• The comparison of the DX and DY variables against the global variable

ugTolV3. The global variable is set by the Avenue Wrap™ avInit (see
section 3.1.8).

1-20 Avenue Wraps

1.3.4 Converting Another Geometric Avenue Script

This example is to convert a user developed Avenue script, iccomppt, which is
supposed to compare the Cartesian coordinates of a point with those of another given
point, and return an indicator flag concerning the comparison, as well as a new pair of
coordinates for the first point depending upon whether a match is made or not. The
Avenue listing of this script may be found in Table 1-4. When converted, this script
is to be a subroutine and operate in the same manner as the Avenue script.

The first three steps of this conversion process for this script are the same as those
of the preceding conversion process, thus we will commence with Step 4.

? 4 Click at the File menu and then at the Import sub-menu of Figure 1-4. The
conventional Window file browser window is now displayed.

? 5 Navigate to the appropriate directory and select the file, iccomppt.ave. The
contents of Table 1-4 are displayed.

The comments below make reference to the converted code shown in Table 1-5.

? 6 Modify the program banner as shown at the top of Table 1.5. Note the:
• Description of the objective (purpose) of the program;
• Identification and description of the given and returned variable argu-

ments; and
• Comment declaration statements regarding the given and returned

variables.

? 7 Since this program is to return more than one variable, it will be defined as a
public subroutine.

? 8 Following the definition of the subroutine are the declarations of the various
variables local to this subroutine. When a program is small, say a page or two
or thereabouts, it is relatively easy to identify all variables and declare them.
However, let us be realistic. If a program is large, some if not many of the
variables will not be recognized for declaration until the testing period, when
the compiler will bring those variables to the programmer's attention. This will
occur because the Option Explicit statement appears in the module.

Conv erting
Another
G eom etric
A v enue Scrip t

Chapter 1 Introduction To Avenue Wraps 1-21

Conv erting
Another

G eom etric
A v enue Scrip t

'
' *
' * *
' * Name: iccomppt File Name: iccomppt.ave *
' * *
' *
' * *
' * PURPOSE: CHECK IF A GIVEN POINT MATCHES ANOTHER POINT USING *
' * A TOLERANCE BASED UPON THE DISPLAY OF THE VIEW *
' * Given: XCORD,YCORD = coord's point to be matched *
' * X2,Y2 = coord's to be matched against*
' * Return: XCORD,YCORD = input values if NOFND = 0 *
' * = X2,Y2 values if NOFND = 1 *
' * NOFND = 0 : no match was found *
' * = 1 : match found within tolerance. *
' * *
' *
'
' ---Get the active view <<<------
 theView = av.GetActiveDoc
'
' ---Extract the incoming values
 XCORD = SELF.Get(0)
 YCORD = SELF.Get(1)
 X2 = SELF.Get(2)
 Y2 = SELF.Get(3)
'
' ---Obtain the snap tolerance value
 returnList = av.Run("SetViewSnapTol",{theView,X2,Y2})
'
' ---Set the tolerance using the projected coordinate system since
' ---the coordinates being used are in a projected coordinate system
 difxxx = returnList.Get(4)
'
' ---DEVELOP ENCLOSING BOX ABOUT POINT
 XTOLUP = X2 + difxxx
 XTOLDN = X2 - difxxx
 YTOLUP = Y2 + difxxx
 YTOLDN = Y2 - difxxx
'
' ---CHECK IF PICK WITHIN ENCLOSING BOX
 IF((XCORD > XTOLUP) or (XCORD < XTOLDN)) then
 NOFND = 0
'
 elseIF((YCORD > YTOLUP) or (YCORD < YTOLDN)) then
 NOFND = 0
'
' ---POINT MATCHES SPECIFIED POINT
 else
 NOFND = 1
'
' ---ADJUST GIVEN COORDINATES
 XCORD = X2
 YCORD = Y2
 end
'
' ---Return the script "iccomppt" results
 Return {XCORD,YCORD,NOFND}

Table 1-4 SAMPLE AVENUE CODE

1-22 Avenue Wraps

Conv erting
Another
G eom etric
A v enue Scrip t

Option Explicit
'
' *
' * *
' * Name: iccomppt File Name: iccomppt.bas *
' * *
' *
' * *
' * PURPOSE: CHECK IF POINT IS WITHIN A TOLERANCE, THAT VARIES *
' * BASED UPON THE VIEW DISPLAY, OF ANOTHER POINT *
' * *
' * GIVEN: XCORD,YCORD = coordinates of point to be checked *
' * X2,Y2 = coordinates of the base point *
' * *
' * RETURN: XCRD2,YCRD2 = input values if NOFND = 0 *
' * = X2,Y2 values if NOFND = 1 *
' * NOFND = 0 : no match was found *
' * = 1 : match was found within the point *
' * snapping tolerance. *
' * *
' * Dim XCORD, YCORD, X2, Y2, XCRD2, YCRD2 As Double *
' * Dim NOFND As Integer *
' * *
' *
'

Public Sub iccomppt(XCORD, YCORD, X2, Y2, XCRD2, YCRD2, noFnd)
'
 Dim pMxApp As IMxApplication
 Dim pmxDoc As IMxDocument
 Dim pActiveView As IActiveView
 Dim viewRect As Double
 Dim thePoint As IPoint
 Dim difxxx As Double, difzzz As Double, difPrj As Double
 Dim XTOLUP As Double, XTOLDN As Double
 Dim YTOLUP As Double, YTOLDN As Double
'
' ---Get the active view
 Set pMxApp = Application
 Set pmxDoc = Application.Document
 Set pActiveView = pmxDoc.ActiveView
'
' ---Initialize the coordinates to be passed back
 XCRD2 = XCORD
 YCRD2 = YCORD
'
' ---Obtain the snap tolerance value based upon the current
' ---view extent
 Call SetViewSnapTol(pmxDoc, X2, Y2, _
 viewRect, thePoint, difxxx, difzzz, difPrj)
'
' ---DEVELOP ENCLOSING BOX ABOUT POINT
 XTOLUP = X2 + difPrj
 XTOLDN = X2 - difPrj
 YTOLUP = Y2 + difPrj
 YTOLDN = Y2 - difPrj

Table 1-5 SAMPLE VB CODE

Chapter 1 Introduction To Avenue Wraps 1-23

Conv erting
Another

G eom etric
A v enue Scrip t

? 9 The program logic is to remain the same. Note the following
• The changes in how the subroutine SetViewSnapTol is called. In

Avenue, the script, SetViewSnapTol, returned a list, returnList, which
contained five items. In the VB code, the subroutine, SetViewSnapTol,
passes back the 5 items, not in a list, but as individual items. It is the
programmer's discretion as to how to handle the returned arguments in
a subroutine call.

• The change in the ending of the "If" statement loop.

'
' ---CHECK IF PICK WITHIN ENCLOSING BOX
 If ((XCORD > XTOLUP) Or (XCORD < XTOLDN)) Then
 noFnd = 0
'
 ElseIf ((YCORD > YTOLUP) Or (YCORD < YTOLDN)) Then
 noFnd = 0
'
' ---POINT MATCHES SPECIFIED POINT
 Else
 noFnd = 1
'
' ---ADJUST GIVEN COORDINATES
 XCRD2 = X2
 YCRD2 = Y2
 End If
'
End Sub

Table 1-5 SAMPLE VB CODE (continued)

1-24 Avenue Wraps

Conv erting
Another
G eom etric
A v enue Scrip t

