
CHAPTER 2 G
E
N
E
R
A
L

C
O
N
V
E
R
S
I
O
N

GEN ERAL CON V ERSION G UIDES
A N D A V EN U E W RAPS

G
U
I
D
E
S

&

A
V
E
N
U
E
W
R
A
P
S

his chapter presents a set of general syntax guidelines for converting ArcView® 3.x
Avenue code to "VB code", and addresses (a) numeric variables and arithmetic
operations, (b) string variables and manipulation thereof, (c) transcendental and otherT

intrinsic functions, (d) query of variables and "If" statements, (e) lists, arrays and collections,
(f) data type declaration, definition and conversion, (g) iterative operations such as "Do", "For"
and "While" loops, (h) miscellaneous general types of operations, such as getting the current
date and time, system alert sound, and summary of declaration of variables, and (i) the use of
certain Avenue Wraps of general nature, a list of which is presented below and overleaf.

In the section describing the use of the Avenue Wraps, the user will find the Avenue Wrap's
corresponding Avenue request, the description of the input and output (returned) variables,
and variable declaration. As a reminder, keep in mind that the variables within the argument list
should be declared in the module that first initializes or defines these variables.

It was stated in Chapter 1, and it is worth repeating here, that Avenue requests could be
concatenated, by separating each request with a period (.). Avenue Wraps, however, cannot
be concatenated. As an example, in Avenue the two requests, GetFTab and FindField could be
concatenated in a single statement:

aField = aTheme.GetFTab.FindField(aFieldName)

However, with Avenue Wraps, each request must appear as a separate statement:
Call avGetFTab(pmxDoc,aTheme,aFTab,pFeatClass,pLayer)
aField = aFTab.FindField(aFieldName)

The Avenue Wraps of this chapter are listed below in alphabetical order with a short description
and the chapter - page number where a full description may be found.

◗ avBasicTrim To remove from a given string the specified 2-23
leading and/or trailing characters

2-2 Avenue Wraps

◗ avClone To make a new object by copying an existing 2-23
object

◗ avExecute To execute a system level command 2-24

◗ avExecute2 To execute a system level command 2-25

◗ avGetEnvVar To get the full path for an environment variable 2-25

◗ avRemoveDupStrings To remove duplicate strings or numbers from 2-26
a list (collection

◗ CopyList To copy a non-object collection into another 2-26
non-object collection, and then initialize (clear)
the original collection

◗ CopyList2 To copy an object collection into another 2-27
object collection, and then initialize (clear)
the original collection

◗ CopyList3 To copy a non-object collection into another 2-27
non-object collection, leaving the original
collection unaltered

◗ CreateList To create a collection, and initialize it to be 2-28
an empty collection.

◗ Dformat To format for output a number according to 2-28
a Fortran Fa.b format

◗ SortTwoArrays To sort up to two different arrays, sorting the 2-29
second array based upon the sort of the first
array.

◗ SortTwoLists To sort up to two different lists (collections 2-30
and not arrays), sorting the second list based
upon the sort of the first list.

The source listing of each of the above Avenue Wraps may be found in Appendix D of this book.

Chapter 2 General Conversion Guidelines 2-3

2.1 Numbers, Arithmetic Operations and Error Trapping

2.1.1 Variable Types and Declarations
In Avenue there is no distinction between types of numeric variables. In VB
programming, however, there is a distinction between whole numbers (num-
bers with no fractional part - no decimal point) and floating point numbers
(numbers with fractional part - decimal point), and each one of them is further
classified based upon the precision of the associated value. Thus, in VB we
have variables that may contain:
• Integer numbers that are stored as 16-bit (2-byte) numbers ranging in

value from -32,768 to 32,767. Such variables should be declared as:
Dim theNumber As Integer

Note that in some other programming languages, these variables are
referred to as Short integers.

• Long integer numbers that are stored as signed 32-bit (4-byte) numbers
ranging in value from -2,147,483,648 to 2,147,483,647. Such variables
should be declared as:

Dim theNumber As Long
• Single precision floating point numbers that are stored as IEEE 32-bit (4-

byte), and ranging in value from -3.402823E38 to -1.401298E-45 for
negative values and from 1.401298E-45 to 3.402823E38 for positive
values. Such variables should be declared as:

Dim theNumber As Single
• Double precision floating point numbers that are stored as IEEE 64-bit

(8-byte), and ranging in value from -1.79769313486231E308 to -
4.94065645841247E-324 for negative values and from 4.94065645841247E-
324 to 1.79769313486232E308 for positive values.. Such variables should
be declared as:

Dim theNumber As Double
When declaring several variables, more than one variable declaration may
appear on the same line, for example:

Dim theNumb1 As Double, theNumb2 As Double
Dim theNumb3 As Long, theNumb4 As Integer

In view of the above, it is important to distinguish between the four number
types when programming in VB. The difference between the short and long
integers, and single and double precision is the precision of the numbers and
memory requirements. As a general rule, the Avenue Wraps use long integers
for all counters and loop indices, and short integers for all others. As for

N U M BERS,
ARIT H M ET IC
OPERA TION S
A N D ERROR
T R A PPIN G

Note: Declare
FTab and VTab
field index vari-
ables as Long, for
example:
Dim col As Long

2-4 Avenue Wraps

floating numbers, Avenue wraps utilizes double precision variables for all
variables associated with geometric related operations. All others are
dependent upon their specific application and need.

2.1.2 Arithmetic Operations
There is no difference between Avenue and VB with regards to the most
common arithmetic notation (symbology of operations) or sequence of
operations, and use of parentheses. Hence, any such code may be ported
directly from Avenue to VB. However, there are some subtle differences of
which the novice VB programmer should be cognizant. These differences
pertain to operators, and to transcendental and other intrinsic functions. The
available operators in VB compared to those of Avenue are presented below:
Operation In Avenue In VB Comments
Exponentiation ^ ^
Multiplication * *
Division / / Returns a floating number
Division Not available \ Returns an integer number
Addition + +
Subtraction - -

2.1.3 Intrinsic Functions
Whereas in Avenue a function was a request invoked by its name being
preceded by its argument list and a period (.), in VB the function is invoked
by its name followed by its argument list enclosed in parentheses. Further-
more, there is a difference in some of the function names, and whereas a
function may be available in Avenue, it is not so in VB, and vise versa. For
examples refer to Table 2-1.

N U M BERS,
ARIT H M ET IC
OPERA TION S
A N D ERROR
T R A PPIN G

TABLE 2-1 INTRINSIC FUNCTIONS

Function In Avenue In VB Function In Avenue In VB

Absolute value A = B.Abs A = Abs(B) Arccosine ANG = A.ACos Not available
Arcsine ANG = A.ASin Not available Arctangent ANG = A.ATan ANG = Atn(ANG)
Cosine A = ANG.Cos A = Cos(ANG) e^B Not available A = Exp(B)
Natural Log A = Ln(b) A = Log(B) Log of a base A = Log(10) Not available
Modulo A = B.Mod(C) Not available Random number Not available A = Rnd(B)
Signum Not available A = Sgn(B) Sine A = ANG.Sin A = Sin(ANG)
Square root C = (A^2+B^2).Sqrt C = Sqr(A^2+B^2) Tangent A = ANG.Tan A = Tan(ANG)

NOTES: 1. The angles in all trigonometric functions are in radians
2. For the Arcsine and Arctangent functions, see also the icasinan and icatan functions in Chapter 12

Chapter 2 General Conversion Guidelines 2-5

N U M BERS,
ARIT H M ET IC
OPERA TION S
A N D ERROR
T R A PPIN G

TABLE 2-2
ROUNDING AND TRUNCATION OF NUMBERS

Given if A is In Avenue In VB
B = to be Use Use
10.2 10 A = B.Floor B = Int(A) or

A = B.Round B = Fix(A) or
A = B.Truncate

10.5 10 A = B.Floor B = Int(A) or
A = B.Round B = Fix(A) or
A = B.Truncate

10.8 10 A = B.Floor B = Int(A) or
A = B.Truncate B = Fix(A)

10.2 11 A = B.Ceiling B = Int(A) + 1 or
B = Fix(A) + 1

10.5 11 A = B.Ceiling B = Int(A) + 1 or
B = Fix(A) + 1

10.8 11 A = B.Ceiling B = Int(A) + 1 or
A = B.Round B = Fix(A) + 1

-10.2 -10 A = Ceiling(B) B = Fix(A) or
A = B.Round or
A = B.Truncate

-10.5 -10 A = Ceiling(B) B = Fix(A) or
A = B.Round or
A = B.Truncate

-10.8 -10 A = Ceiling(B) B = Fix(A) or
A = B.Truncate

-10.2 -11 A = B.Floor B = Int(A)
-10.5 -11 A = B.Floor B = Int(A)
-10.8 -11 A = B.Floor B = Int(A) or

A = B.Round

2-6 Avenue Wraps

2.1.4 Rounding and Truncation of Numbers
Table 2-2 identifies the use, and hence the comparison between the various
functions that are available in Avenue and VB.

2.1.5 String Messages
There are several Avenue Wraps contained in Chapter 6 that enable the
programmer to display various types of message boxes, or to display
messages in the status bar, all of which require the input of a message box title
or heading, and/or an instruction. These may be specified as direct text in the
Avenue Wrap subroutine or function, or in the form of a variable. In either
case, there are four conversion issues that should be kept in mind. Note that
these issues represent generic string manipulation rules and they are not
specific to the message boxes.
• Concatenation: Two strings may be concatenated to form one by use of

the plus (+) sign. This is the same in both Avenue and VB. However,
if a space is required between the two strings, in Avenue the programmer
could introduce two consecutive plus signs (++) to denote an extra
space. This is not possible in VB. If an additional space is desired it must
be so introduced between double quotes if it is to separate two numeric
variables, or be incorporated at the end of the preceding string, or at the
start of the subsequent string.

• Number Conversion In Avenue, a number was converted to a string
with the request AsString. In VB, such conversion is typically made with
the function CStr.

• New Message Line In Avenue, a new line was introduced in a mes-
sage string by introducing the characters +NL+ between two strings. In
VB, this is done by introducing the function Chr(13) within two plus
signs.

• Program Continuation Lines In Avenue, the program was able to
break the code and continue it in the next line. This is not so in VB. To
continue a statement onto the next line, a space and an underscore (_)
must appear at the end of the line to be continued.

As an example of the above consider the Avenue code below and its
conversion to VB. Note: (a) the conversion of ++ to + and the introduction
of the space character(s) in the hard-coded strings, (b) the substitution of

N U M BERS,
ARIT H M ET IC
OPERA TION S
A N D ERROR
T R A PPIN G

When copying
Avenue source
code and pasting
it on a VB proce-
dure, if there are
two plus signs
(++) in a statement
line, and there are
no other conver-
sion errors in that
statement, or they
have been cor-
rected, one of the
two plus signs will
disappear. Hence,
first take care of
the two pluses.

Chapter 2 General Conversion Guidelines 2-7

N U M BERS,
ARIT H M ET IC
OPERA TION S
A N D ERROR
T R A PPIN G

CStr for .AsString, (c) the substitution of Chr(13) for NL, and (d) the
introduction of " _"to continue the statement on another line.

With Avenue
MsgBox.Warning("The lengths"++D1.AsString++
"and"++D2.AsString+NL+"are invalid", aTitle)

With Avenue Wraps
Call avMsgBoxWarning("The lengths " + CStr(D1) + _
" and " + CStr(D2) + Chr(13) + "are invalid", aTitle)

2.1.6 Error Trapping
A good feature to take advantage of when developing in either Visual Basic
or Visual Basic for Applications is the ability to trap errors. Error trapping
provides the developer a means to avoid application runtime errors, which
typically results in the application to cease to operate properly. By avoiding
application runtime errors, should an error be encountered, the application
can still be used to perform other functions, rather than simply "dying". An
example of how error trapping can be implemented is shown below:
'
Public Sub ShowErrorTrapping()
'
Dim pMxApp As IMxApplication
Dim pmxDoc As IMxDocument
Dim pActiveView As IActiveView
Dim pMap As IMap
'
' ---This statement informs the application where to
' ---branch when an error is detected in the procedure
On Error GoTo Errorhandler
'
' ---Get the active view
Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
' ---do something else

 .
 .
 .

'
' ---At this point, our work is done
Exit Sub
'
' ---Handle any errors detected in the procedure
Errorhandler:
'
' ---Display detected error number and a description
MsgBox "Error " & Err.Number & " - " & Err.Description & _
 Chr(13) & "Subroutine: ShowErrorTrapping"
'
End Sub

2-8 Avenue Wraps

M A N IPUL A T ION
OF STRIN G
V ARIABL ES

TABLE 2-3
STRING MANIPULATION FUNCTIONS

In Avenue In VB
Concatenate two strings aString1+ aString2 aString1+ aString2

Concatenate two strings
separated by a space String1++ aString2 aString1+ " " + aString2

Capitalize the first letter of a
word in a string when words are
separated with input character String1.BasicProper (chr) Not available

Remove from the start and end of
a string the specified characters String1.BasicTrim (L, R) avBasicTrim(String1,L,R)

Extract the word at the specified
position (0 to N-1), where N is
the number of words (space
delimited) String1.Extract (Position) Not available

Returns the position of the first
occurrence of String2 in String1 String1.IndexOf (String2) InStr(1,String1,String2,1)

Change all string characters to
lower case String1.LCase LCase(String1)

Return the specified left most
characters String1.Left (nChr) Left(String1, nChr)

Extract a string, starting at a
specified offset, the specified
number of characters String1.Middle (Off, nChr) Mid(String1, Off, nChr)

Capitalize the first letter of a
word in a string when words are
separated with blank space String1.Proper Not available

Place a string within a pair
of quotes String1.Quote Not available

Return the specified left most
characters String1.Right (nChr) Right (String1,nChr)

Introduce at the positions shown
in the cntrList, the str characters String1.Split(cntrList,str) Not available

Replace in a string all occurrences
of a1 with a2 String1.Substitute (a1,a2) Replace(String1, a1, a2)

Replace in a string all occurrences
of a1 with a2 String1.Translate (a1,a2) Not available

Remove leading & trailing spaces String1.Trim Trim (String1)

Change all string characters to
upper case String1.UCase UCase(String1)

Remove the pair of quotes from
a string within a pair of quotes String1 .Unquote Not available

Chapter 2 General Conversion Guidelines 2-9

M A N IPUL A T ION
OF STRIN G
V ARIABL ES

TABLE 2-4
BOOLEAN QUERYING OF VARIABLES AND IF STATEMENTS

The concatenation of more than one if condition in an "if" statement is the same in both
Avenue and VB

In Avenue In VB

◗ Querying whether a string variable is a number
If(theString.IsNumber)Then If(IsNumeric(theString))Then

...do something ...do something
End End If

◗ Querying whether a string variable is not a number
If(theString.IsNumber.Not)Then If(Not IsNumeric(theString))Then

...do something ...do something
End End If

◗ Querying whether a string variable has not been defined
If(theString.IsNull)Then If(IsNull(theString))Then

...do something ...do something
End End If

◗ Querying whether a string variable has been defined
If(theString.IsNull.Not)Then If(Not IsNull(theString))Then

...do something ...do something
End End if

◗ Querying whether a string variable has not been defined
If(theString = Nil)Then If(IsNull(theString) Then

2.2 Manipulation of String Variables

2.2.1 String Manipulation Requests and Functions There are
several text string manipulation requests in Avenue, most all of which have
to be converted to VB code. The sole exception is the concatenation of two
strings with a plus sign (+) to create a single new string. Three of the string
manipulation requests have been addressed in the preceding section. Shown
in Table 2-3 are the various Avenue string manipulation requests and their
counterparts, if any in VB. In addition to the requests of Table 2-3, the
following are considered as requests of rather common use:
• To determine the number of characters in a string:

The Avenue request is: nChars = theString.Count
The VB function is: nChars = Len(theString)

with the variables declared as:
Dim nChars As Long
Dim theString As String

2-10 Avenue Wraps

M A N IPUL A T ION
OF STRIN G
V ARIABL ES

• To check if a string is within another string:
The Avenue request is: i = String.Contains(aString)
The VB function is: i = InStr(1,String,aString,1)

with the variables declared as:
Dim i As Long
Dim String, aString As String

where: i = 0 : denotes aString was not found
i > 0 : position of first occurrence of aString
in String with values beginning at 1

• To find position of first occurrence of aString in String:
The Avenue request is: i = String.IndexOf(aString)
The VB function is: i = InStr(1,String,aString,1)

2.2.2 Querying Variables and If Statements At times it is neces-
sary to query a variable in order to determine the type of the variable, and/
or to change a variable from one type to another. For example, one may wish
to change a number into a string so that it may be incorporated in a message
box, or convert a number, which is in the form of a string into a number, so
as to perform arithmetic operations. The latter often occurs when all data (text
and numbers) of an application are read into the program as strings. Regard-
ing the conversion of numbers, stored as strings, to variables of number type,
attention has to be paid as to the type of number, integer, long, single or
double. In Avenue there is no distinction between these types, they are all
converted in the same manner. This is not so in VB.

Generally, querying of variables is done with the "If...Then...Elseif...Else...End"
statement in Avenue or with the "If...Then...Elseif...Else...End If" statement
in VB, with the Elseif and Else parts being optional in either Avenue or VB.
Note that the operation of the If statement is the same in both Avenue and
VB. The only difference between them being the ending statement.

In Avenue, an "If" query terminates with the word "End", while in VB it
terminates with the words "End If". A compilation error will be displayed if
an "If" statement does not terminate with "End If".

When querying a variable, although most of the times a positive (true)
response is expected, at times a negative response is desired (false). Also,
the variable theString must have been declared as a string or variant.

The most common commands regarding queries of variables and "If" state-
ments are contained in Table 2-4, including positive and negative tests.

Since in Avenue
the "If", "For" and
"While" state-
ments all termi-
nate with an "End"
statement, it may
be a good idea if
the first thing to
be done when
converting to VB
is to convert all
"End" statements
of an "If" state-
ment to "End If".

Chapter 2 General Conversion Guidelines 2-11

M A N IPUL A T ION
OF STRIN G
V ARIABL ES

2.2.3 Converting and Initializing Variables
At times it is necessary to convert a variable from one type to another for most
of the same reasons stated in the preceding section on querying variables.

◗ Setting a string variable to be undefined. This is usually performed at the
beginning of a program to initialize a variable.
In Avenue In VB
theString = Nil theString = Null

Alternatively to the example above, in both Avenue and VB, a variable may
be initialized to some number of string, which is bound to indicate an
initialization such as:
A = 999999.0 which in VB will display as 999999#
B = 0.0 which in VB will display as 0#
I = -1 which in VB will also display as -1
theString = " " which in VB will also display as " "

◗ Converting to a number a string which has been proven to be a number. Note
the distinction in VB between the four aforementioned types of numbers.
In Avenue
theNumber = theString.AsNumber
In VB
theNumber = CInt(theString) to change the string into an

integer in the range of -32,768 to 32,767; fractions are
rounded to the nearest integer.

theNumber = CLng(theString) to change the string into a
long integer in the range of -2,147,483,648 to 2,147,483,647;
fractions are rounded to the nearest integer.

theNumber = CSng(theString) to change the string into a
single precision floating number in the range of -
3.402823E38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E38 for positive values.

theNumber = CDBL(theString) to change the string into a
double precision floating number in the range of -
1.79769313486231E308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for posi-
tive values,

theVariant = CVar(aVariable) to change a string, integer,
long, single or double number into a variant

2-12 Avenue Wraps

TABLE 2-5
LISTS AND COLLECTIONS

In Avenue In VB

◗ To create or initialize a collection
aList = List.Make Call CreateList(aList)

◗ To append an item to a collection (see below for inserting an item)
aList.Add(aVal) aList.Add(aVal) (#)

aList.Add aObj (##)

◗ To get (extract) an item from a collection
aVal = aList.Get(j) aVal = aList.Item(j)

◗ To remove an item from a collection
aList.Remove(j) aList.Remove(j)

◗ To insert an item at the beginning of a collection
aList.Insert(aVal) aList.Add (aVal), before:=1 (#)

aList.Add aObj, before:=1 (##)

◗ To shuffle an item within a collection - j in this case denotes the position (subscript)
after which the item aVal is to be inserted
aList.Insert(aVal) aList.Add(aVal), before:=j (#)
aList.Shuffle(aVal,j) aList.Add aVal, before:=j (##)

◗ To replace an item within a collection
aList.Set(j,aVal) aList.Add(aVal), after:=j (#)

aList.Remove(j)
aList.Add aVal, after:=j (##)
aList.Remove(j)

◗ To count the number of items in a collection
nItems = aList.Count nItems = aList.Count

◗ To clear a collection
aList.Empty Call CreateList(aList)

◗ To clone a collection
aList1 = aList2.Clone Set aList1 = aList2

Notes:
• For the Avenue Wrap CreateList refer to the end of this chapter and Appendix D
• (#) Use this for non-objects (strings, numbers, etc.)
• (##) Use this for objects (Collections and ArcObjects)
• j is measured from base 0 j is measured from base 1, so that, all Avenue

index values used in collections will need to be
incremented by one

L IST S, ARRAYS
A N D
COL L E C T ION S

Chapter 2 General Conversion Guidelines 2-13

L IST S, ARRAYS
A N D

COL L E C T ION S

2.3 Lists, Arrays and Collections

2.3.1 Definitions
In Avenue, a grouping of items such as variables, themes, tables, views and
others could constitute a list. In VB, lists are referred to as collections. In
addition to collections, the user is able to utilize arrays, much the same way
as one would in Fortran or C. In VB, arrays are declared based upon the type
of data they are to contain, while collections are declared as themselves.
Thus, the corresponding Dim statements for the following samples would be:

Dim iAry(5) As Integer iAry is a one dimensional array.
Dim jAry(2,30) As Long jAry is a two dimensional array.
Dim kAry(2,4,6) As Single kAry is a three dimensional array.
Dim mAry() As Double mAry is a dynamic array.
Dim aCol As Collection aCol is declared to be a non-initialized

collection (Nothing).
Dim aCol As New Collection aCol is declared to be, and initiated as a

zero-length or empty collection.

Note that collections are one dimensional only. Reference is made to the
Avenue Wrap CreateList of this chapter which may be used to initialize and
empty a collection. This Avenue Wrap is not applicable to arrays.

2.3.2 Working with Arrays
Working with arrays in VB is quite similar to working with arrays in Fortran
or C. One may assign values to array cells, or extract values from such cells
by referring to the array and the desired cell index. The programmer should
note that the default base index of an array in VB is zero (0) and not one (1).
However, it can be changed to one (1), if so desired, by introducing in the
declaration section of the module the statement:

Option base 1
Another way to control the issue of array subscripts is to specify the low and
upper bounds of the subscripts. For example, the declaration:

Dim iArray(15) As Integer
denotes a one dimensional array with 15 cells between 0 and 14, or between
1 and 15 if Option base 1 had been specified, while the declaration:

Dim iArray(3 To 7) As Integer
denotes a one dimensional array with 5 cells between 3 and 7. In the latter case
there are no 0, 1 and 2 cells.

2-14 Avenue Wraps

L IST S, ARRAYS
A N D
COL L E C T ION S

Note that you cannot use the "Add" and "Count" commands with an array.
Some of the operations associated with arrays include:
• To extract a value from a cell use an equation:

aVal = theArray(j)
where j must have been previously declared to be an integer or a long
variable within the range limits of the Dim statement that declared
theArray.

• To assign a value to a cell use an equation:
theArray(j) = aVal

where j must have been previously declared to be an integer or a long
variable within the range limits of the Dim statement that declared
theArray.

2.3.3 Working with Collections
Working with collections is not quite the same as working with arrays. The
differences are:
• A collection may contain variables of different type.

• The base index of a collection is one (1) and not zero (0), the opposite of
arrays.

The most common commands regarding Avenue lists and VB collections, and
the differences between them are contained in Table 2-5.

2.3.4 Sorting of Collections
In Avenue the request "Sort" is used to sort a list. In VB, the Avenue Wrap
"SortTwoLists" may be used to sort one or two collections, but not arrays.
When sorting two collections, SortTwoLists treats the two collections as a
two dimensional array to be sorted under one sort key, that being the first
collection. The use of this Avenue Wrap is presented later on in this chapter,
while the source code of "SortTwoLists" may be found in Appendix D.

Chapter 2 General Conversion Guidelines 2-15

L IST S, ARRAYS
A N D

COL L E C T ION S

2.3.5 Copying of Collections
There are two Avenue Wraps that do not have Avenue counterparts, and
which allow the programmer to copy one collection into another. The
CopyList enables the programmer to copy a non-object collection into
another non-object collection, while CopyList2 enables the programmer to
copy an object collection into another object collection. The use of these two
Avenue Wraps is presented later on in this chapter, while their source listing
may be found in Appendix D.

2-16 Avenue Wraps

IT E R A T IV E
OPERA TION S

2.4 Iterative Operations

2.4.1 The Iterative Statements
In Avenue there are only two iterative operation statements, the "For Each
... End" statement and the "While ... End" statement. In VB there are three,
the "Do", the "For" and the "While ... Wend", of which:
• the "Do" has four variations, the "Do While ... Loop", the "Do Until ...

Loop", the "Do ... Loop While", and the "Do ... Loop Until", and

• the "For" has two variations, the "For ... Next", and the "For Each ... Next".

2.4.2 Converting the Avenue "For Each ... End" Statement
In Avenue, this statement is comprised of the following lines:

For Each Rec in theList
... do something with Rec

End
where Rec is an object in theList and theList is a list.

To convert this statement, the programmer must be cognizant of what theList
is comprised. If theList contains:
• Objects, then the programmer should use the following

For Each Rec in theList
... do something with Rec

Next Rec
where Rec is an object in theList and declared accordingly, and theList
is a collection of objects. In this example, theList contains objects of the
same type.

• Variables, then the programmer should use the following
For iRec = 1 To theList.Count

Rec = theList.Item(iRec)
... do something with Rec

Next iRec
where iRec should be declared as an integer or long, theList may be a
collection or array, and Rec as a variant. Note that in the above example,
iRec is both a counter and an index to theList.

Chapter 2 General Conversion Guidelines 2-17

IT E R A T IV E
OPERA TION S

Alternatively, the user may elect to compute the index to theList for which
something is to be done.

K = 5
For I = iLow To iHigh

 K = K + 1
... do something with theList(K)

Next I

In using the above variables I, K, iLow and iHigh, the programmer should keep
in mind that in a collection the base reference to an Avenue list is zero (0), while
the base reference to a VB collection is one (1).

2.4.3 Converting the Avenue "While ... Wend" Statement
In Avenue, this statement is comprised of the following lines:

While Expression
... do something as long the Expression is true

End

In VB, the programmer may use any one of the four "Do" iterative statement
variations depending on how the programmer wishes to set the conditional
expression to be evaluated. For example, consider the following:

DoOver = True
Do While DoOver

... do something
If (something) Then

... do some other things
Else

DoOver = False
End If

Loop

Regarding the four variations of the "Do" statement, the programmer should
note that:
• The "While" condition performs the operations between "Do" and

"Loop" for as long as the conditional expression (DoOver in the above
example) is true, while the "Until" condition performs said operations
until said condition is met.

2-18 Avenue Wraps

IT E R A T IV E
OPERA TION S

• By placing the conditional test at the top with the "Do" loop, the
subsequent statements are executed up to the "Loop" statement only if
the condition is true. Thus the possibility exists that said subsequent
statements may never be executed. By placing the conditional test at the
bottom with the "Loop" said subsequent statements will be executed at
least once.

In addition to one of the above four variations of the "Do" statement, the
programmer may elect to use the "While ... Wend" statement, which repre-
sents a more direct one to one conversion between Avenue and VB, and has
only one difference, the substitution of "Wend" for "End" in the ending
statement of the iterative operation. While this may at first seem to be
preferential, it does not provide as good of a structured approach as the "Do"
statement, particularly if an early exit of the iterative process is desired.

2.4.4 Early Exit of an Iterative Statement
At times it becomes desirable to exit an iterative process earlier than provided
by the conditions of the iterative processes. In Avenue, the programmer
could exit an iterative process earlier than dictated by the conditions of a "For"
or "While" statement by introducing the "Break" statement. In VB, the user
has the following options:
• In any of the iterative processes, the user may terminate a subroutine or

function without completing the entire iteration process by introducing
the "Exit Sub", or "Exit Function" statement respectively.

• In the two variations of the "For" statement, the programmer may
terminate the iterative process, and proceed to continue with the next
statement after the "Next" statement by introducing the "Exit For"
statement line.

• In the four variations of the "Do" statement, the programmer may
terminate the iterative process, and proceed to continue with the next
statement after the "Loop" statement by introducing the "Exit Do"
statement line.

• The only way to prematurely exit a "While ... Wend" iterative process is
with a "GoTo" statement (see the following section about Advancing to
the Next Iteration).

Chapter 2 General Conversion Guidelines 2-19

2.4.5 Advancing to the Next Iteration
At times it its desirable to skip to the next iteration from somewhere within the
code of the iteration process. In Avenue, this can be accomplished with the
"Continue" statement. Such a statement and function is not available in VB.
One way to get around this problem is to restructure the code of the iteration
routine perhaps with properly constructed "If" statements. Another way is
with the use of the "GoTo" statement. As an example consider the following:

DoOver = True
K = 1
While DoOver

Do something that involves modification of K
If (K > 0) Then

... do something else with K
Elseif (K = 0) Then

Exit Sub ' If K=0 exit the subroutine
Elseif (K < 0) Then

GoTo Line 1 ' If K<0 skip remaining steps,
End If ' but do not exit subroutine

... continue doing something
Line 1 ' Come here when K<0

Wend

Note that a "GoTo" statement can be used in other instances, and more than
once, in which case, different line numbers or text should be used. It is
recommended that the use of this statement be a last resort case, because it
does not create a well structured code, and can become confusing during the
debugging stage.

IT E R A T IV E
OPERA TION S

2-20 Avenue Wraps

2.5 Miscellaneous Operations

2.5.1 Current Time and Date
At times it is desirable to retrieve from the computing system the time and date
that a program is being executed. This may be done as follows:

In Avenue
D = Date.Now
d1 = D.SetFormat("d MMMM yyyy hhh m s").AsString
d2 = D.SetFormat("d MMMM yyyy").AsString
d3 = D.SetFormat("hhh m s").AsString
The second line (d1) above will get the date and time, the third line (d2) will
get the date only, and fourth line (d3) will get the time only. The string
appearing in the SetFormat statement may vary from what is shown above to
meet a specific user format for the date and/or time.
In VB
Dim aDate1, aDate2, aDate3
aDate1 = Date
aDate2 = Now
aDate3 = FormatDateTime(aDate1,K)
MsgBox aDate1 prints 5/14/2002
MsgBox aDate2 prints 5/14/2002 9:28:11 AM
MsgBox aDate3 prints 5/14/2002 9:28:11 AM if K = 0

Tuesday, May 14, 2002 if K = 1
5/14/2002 if K = 2
9:28:11 AM if K = 3
9:28 if K = 4

2.5.2 System Beep
Usually when an error occurs during the execution of a program, or if an
erroneous data is key entered in a form, it is a good idea for the program to
issue a warning sound or beep. This is done as follows:
In Avenue

System.Beep
In VB

Beep

2.5.3 Variable Declarations Although some of the following may
have been addressed elsewhere in this book, it is felt that it is worth repeating.
Before proceeding any further, it is necessary to distinguish between the

M ISCE L L A N EOU S
OPERA TION S

Chapter 2 General Conversion Guidelines 2-21

TABLE 2-7
LIST OF NULL DEFINITION IN VB

Object To define To query whether
or an object or variable an object or variable

variable as null or empty is null or empty

All objects Set anObject = Nothing If (anObject Is Nothing) Then

Variants aVariant = Null If (IsNull(aVariant)) Then

Strings aString = Null If (IsNull(aString)) Then

All numbers not applicable If (aNumber = 0) Then
when a number has not been initialized

TABLE 2-6
VB DECLARATION OF COMMON

OBJECTS AND VARIABLES

Object/variable Declaration Statement

Document Dim pDoc As IMxDocument
Map Dim pMap As IMap
Layer (theme) Dim pLayer As ILayer
Table (FTab) Dim aFTab As IFields
Collection Dim aList As New Collection
Selection Dim aSel As ISelectionSet
Point Dim pPoint As IPoint
Lines Dim pLine As IPolyline
Polygon Dim pPolygon As IPolygon
Variant Dim aNumber As Variant
Integer Dim aNumber As Integer
Single precision Dim aNumber As Single
Double precision Dim aNumber As Double
String Dim aString As String

M ISCE L L A N EOU S
OPERA TION S

words "declare" and "define", and
derivatives thereof. Each variable
and object used in a program must
first be declared as to its type (vari-
ant, integer, string, etc.). This is
done with the Dim statement. Table
2-6 contains a summary of how vari-
ous type of variables and objects
should be declared. The list of
declarations in this table is not by
any means the complete list of dec-
larations. Only the ones that are
considered as the most common are
presented therein.

In Avenue, all variables used in a
script have to be defined or initial-
ized prior to their use. That is, one
could not say

A = B + 5.9
Unless B had been previously been

assigned a value. Likewise, the statement below would be invalid
theFTab = theTheme.GetFTab

unless theTheme had previously been defined as a theme. However, there
are variables and objects that for some reason need to be defined as null
objects or empty variables. This implies that it will be desirable to also know

Note: Declare
FTab and VTab
tables as IFields,
for example:
Dim theFTab As
IFields
Dim theVTab As
IFields

2-22 Avenue Wraps

M ISCE L L A N EOU S
OPERA TION S

whether an object or a variable has been defined or not. In Avenue, the key
word for such querying is "Nil". In VB, the corresponding word is "Null" for
non-objects, and "Nothing" for objects, see Table 2-7 for a summary.

In VB we have the word "Empty" and the function "IsEmpty", which are
associated with variables only, and not with objects. Thus, if we wish, for
some reason or another to not define or initialize a variable, we can write:

B = Empty
... do something and then later on ask
If (Not IsEmpty(B)) Then

A = B + 5.9
End If

This has no counterpart in Avenue.

2.5.4 Script Execution
In Avenue, the programmer was able to execute another script by using the
av.Run statement. With VB code, the programmer executes another script by
calling a subroutine or a function, depending upon how the other script has
been implemented. Functions return one and only one value, while subrou-
tines can return many, or none, values. For example:
In Avenue

myList = List.Make
myList.Add(TRUE)
returnValue = av.run("script2", myList)

In VB with script2 implemented as a Subroutine
Dim myList As New Collection
Dim returnValue As Variant
Call CreateList(myList)
myList.Add (TRUE)
Call script2 (myList, returnValue)

In VB with script2 implemented as a Function
Dim myList As New Collection
Dim returnValue As Variant
Call CreateList(myList)
myList.Add (TRUE)
returnValue = script2 (myList)

Note, all references to the SELF statement must be replaced by putting the
variables created with the SELF statement in the argument list of the
subroutine or function.

Chapter 2 General Conversion Guidelines 2-23

G E N ERA L
A V E N UE
W RAPS

a v Ba sicT rim

a v C lone

2.6 General Avenue Wraps

2.6.1 Function avBasicTrim
This function enables the programmer to remove from a given string the
specified leading and/or trailing characters.

The corresponding Avenue request is:
newString = theString.BasicTrim(LeadChar, TrailChar)

The call to this Avenue Wrap is:
newString = avBasicTrim(theString, LeadChar, TrailChar)

GIVEN: theString = the given string to be trimmed
LeadChar = the characters to be removed at the start of the

given string
TrailChar = the characters to be removed at the end of the

given string

RETURN: newString = the resultant string

The given and returned variables should be declared where first called as:
Dim theString As String, LeadChar As String, TrailChar As String
Dim newString As String

2.6.2 Function avClone
This function enables the programmer to make a new object by copying an
existing object.

The corresponding Avenue request is:
theNewObject = theObject.Clone

The call to this Avenue Wrap is:
Set theNewObject = avClone(theObject)

GIVEN: theObject = object which is to be copied

RETURN: theNewObject = copy of the object

The given and returned variables should be declared where first called as:
Dim theObject As IUnknown
Dim theNewObject As IClone

2-24 Avenue Wraps

G E N ERA L
A V E N UE
W RAPS

2.6.3 Subroutine avExecute
This subroutine enables the programmer to execute a system level command.
In using this subroutine, note that once the command has been issued, the
statements that follow the call to avExecute will be immediately executed,
there is no waiting for the system command to finish its processing. In order
to pause ArcMap until said command is completed, one possibility is to
perform a loop checking for the existence of a file, which could be created when
said command has finished processing (see example below and avExecute2).

The corresponding Avenue request is:
System.Execute (aCommand)

The call to this Avenue Wrap is:
Call avExecute(aCommand)

GIVEN: aCommand = the command to be executed

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim aCommand As String

The code below is an example of how to invoke a program from within a VBA
module. The program "Adjust" reads a file called "inFile" and will create a
"dummy" file called "outFile" when its processing is complete.

Public Sub Test
Dim aCmnd, inFile, outFile As String

.....
Perform some operations to create "inFile"
.....
aCmnd = "c:\Dir1\SubDir3\Adjust.exe " + inFile
Call avExecute(aCmnd)
Do While (True)
 If (avFileExists(outFile)) Then
 Exit Do
 End If
Loop
.....

End Sub

a v Execute

The Public
v a r i a b l e ,
ugWinStyle or
the Avenue
Wraps Prop-
erty WinStyle
can be used to
control the
window style
that is used by
the avExecute
subrout ine .
The default
window style
value is 1 and
denotes that
the Window is
to have focus
and be re-
stored to its
original size
and position.
Possible val-
ues include: 0,
1, 2, 3, 4 and 6.

Chapter 2 General Conversion Guidelines 2-25

G E N ERA L
A V E N UE
W RAPS

a v Execute2

2.6.4 Subroutine avExecute2
This subroutine is similar to avExecute with the exception that the programmer
supplies the name of a file which avExecute2 waits for to exist prior to
terminating. Any statements following the call to avExecute2 will not be
executed until the specified file exists. This subroutine provides better
performance than avExecute on computers operating Windows 2000. Note
that the ArcMap document file should have a name other the default of
"Untitled..." assigned to it, if not, this subroutine will not function properly.

The corresponding Avenue request is:
System.Execute (aCommand)

The call to this Avenue Wrap is:
Call avExecute2(aCommand, aFileName)

GIVEN: aCommand = the command to be executed
aFileName = name of the file whose existance signals the

end of processing

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim aCommand As String, aFileName As String

2.6.5 Function avGetEnvVar
This function enables the programmer to get the full path for an environment
variable. Below are examples of what is returned for what is given:
Given Return
ARCHOME C:\ARCGIS\ARCEXE81
TMP C:\WINDOWS\TEMP
ABC yields an empty string (""), assuming the ABC does not exist

The corresponding Avenue request is:
theEnvVar = System.GetEnvVar (aPath)

The call to this Avenue Wrap is:
theEnvVar = avGetEnvVar(aPath)

GIVEN: aPath = name of the environment variable to be pro-
cessed

RETURN: theEnvVar = full path name associated with the variable

a v G etEnv V a r

2-26 Avenue Wraps

G E N ERA L
A V E N UE
W RAPS

The given and returned variables should be declared where first called as:
Dim aPath, theEnvVar As String

2.6.6 Subroutine avRemoveDupStrings
This function enables the programmer to remove duplicate strings or numbers
from a list (collection). In addition, the programmer can specify whether the
strings in the list are to be treated as case sensitive or case insensitive. That
is, are upper and lower case characters to be treated the same. If they are not
to be treated the same, this is referred to as being case sensitive.

The corresponding Avenue request is:
aList.RemoveDuplicates

The call to this Avenue Wrap is:
Call avRemoveDupStrings(aList, caseFlag)

GIVEN: aList = list of strings or numbers to be modified
caseFlag = flag denoting the case sensitivity of the list

True = case sensitive, False = insensitive

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim aList As New Collection, caseFlag As Boolean

2.6.7 Subroutine CopyList
This subroutine enables the programmer to copy a collection into another
collection, and then initialize (clear) the original collection (the collection that
was copied). Note that this subroutine operates only on non-object collec-
tions, collections containing variants, numbers and strings. To copy an
object collection into another object collection the programmer must use the
CopyList2 Avenue Wrap, which is presented later on.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call CopyList(origList, newList)

GIVEN: origList = list to be copied and then cleared

RETURN: newList = copy of the original list

Cop yL ist

a v Rem ov e
Dup Strings

Chapter 2 General Conversion Guidelines 2-27

G E N ERA L
A V E N UE
W RAPS

Cop yL ist3

The given and returned variables should be declared where first called as:
Dim origList As New Collection, newList As New Collection

2.6.8 Subroutine CopyList2 This subroutine enables the program-
mer to copy a collection into another collection, and then initialize or clear the
original collection (the one that was copied). Note that these collections
contain objects, not variables such as strings, numbers and so forth. To copy
a non-object collection into another non-object collection use the CopyList
Avenue Wrap described above.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call CopyList2(origList, newList)

GIVEN: origList = Object list to be copied and then cleared

RETURN: newList = Object copy of the original list

The given and returned variables should be declared where first called as:
Dim origList As New Collection, newList As New Collection

2.6.9 Subroutine CopyList3
This subroutine enables the programmer to copy a collection into another
collection, leaving the original collection (the collection that was copied)
unaltered. Note that this subroutine will process non-objects and objects,
offering a more generic version of CopyList and CopyList2 with the exception
that the original collection is not cleared.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call CopyList3(origList, newList)

GIVEN: origList = list to be copied

RETURN: newList = copy of the original list

The given and returned variables should be declared where first called as:
Dim origList As New Collection, newList As New Collection

Cop yL ist2

2-28 Avenue Wraps

2.6.10 Subroutine CreateList
This subroutine enables the programmer to create a collection which contains
either objects or variables, and initialize it to be an empty collection.

The corresponding Avenue request is:
newList = List.Make

The call to this Avenue Wrap is:
Call CreateList(newList)

GIVEN: nothing

RETURN: newList = the new empty collection

The given and returned variables should be declared where first called as:
Dim newList As New Collection

2.6.11 Function Dformat
This function creates a string representation of a number according to a
Fortran Fa.b format. In using this function, note the following:
• The given number (theNumber) can be declared as Decimal, Double,

Integer, Long, Short or Single.
• If the number of digits to the right of the decimal point (DigitsRight) is

zero (0), the output string will contain only the whole number part of a
rounded floating point number (no decimal point will be included).

• If the number of digits to the right of the decimal point (DigitsRight) is
one (1) or higher, the output string will contain a decimal point and that
many zeros to the right of the decimal point.

• If the given number (theNumber) exceeds the number of characters, as
specified by TotalDigits, the output string (theString) is expanded to
accommodate the number, automatically.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
theString = Dformat(theNumber, TotalDigits, DigitsRight)

GIVEN: theNumber = the number to be formatted
TotalDigits = the total number of characters, including lead-

ing spaces, decimal point and decimal digits, in
the string to be passed back

G E N ERA L
A V E N UE
W RAPS

Dform a t

C rea teL ist

Chapter 2 General Conversion Guidelines 2-29

DigitsRight = digits to the right of the decimal point

RETURN: theString = string representing the formatted number

The given and returned variables should be declared where first called as:
Dim theNumber As XX (see commentary above regarding declaration)
Dim TotalDigits As Integer, DigitsRight As Integer
Dim theString As String

2.6.12 Subroutine SortTwoArrays This subroutine enables the program-
mer to sort one or two different one-dimensional arrays. When sorting two
arrays, the sorting of the second array corresponds to the sort of the first
array. This subroutine is similar to SortTwoLists with the exception that this
procedure sorts arrays not lists (collections). As such, this procedure
operates much faster than SortTwoLists when dealing with a large number
of elements.

In using this subroutine, note the following:
• The order of the arrays passed in are changed by this procedure.
• If only one array is to be sorted, the second array, Array2 can be passed

in as Null.
• If Null is specified for aMssg, a progress bar will not be displayed during

the sorting process.
• The arrays passed in can contain string and numeric data. They can not

contain any objects.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call SortTwoArrays(Array1, Array2, aMssg, anOrder)

GIVEN: Array1 = first array of items to be sorted
Array2 = second array of items to be sorted, if only

one array to be sorted specify as NULL
aMssg = progress bar message, if no message is

desired specify as NULL
anOrder = the sort order as a Boolean:

True = ascending, and
False = Descending

G E N ERA L
A V E N UE
W RAPS

SortT w oArra ys

2-30 Avenue Wraps

G E N ERA L
A V E N UE
W RAPS

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim Array1(), Array2(), aMssg As Variant, anOrder As Boolean

2.6.13 Subroutine SortTwoLists This subroutine enables the program-
mer to sort one or two different lists (collections, not arrays). When sorting
two lists, the sorting of the second list corresponds to the sort of the first list.
That is, SortTwoLists treats the two lists (List1 and List2) as a two dimensional
array (List1 constituting the first column and List2 the second) to be sorted
under one sort key, that of List1.

In using this subroutine, note the following:
• The order of the lists passed in are changed by this script to reflect the

effects of the sort (List1 and List2 are modified by this subroutine).
• If only one list is to be sorted, the second collection List2 can be an empty

list, or passed in as Nothing.
• If Null is specified for aMssg, a progress bar will not be displayed during

the sorting process.

There is no corresponding Avenue request for sorting two lists. The
corresponding Avenue request to sort one list is:

aList.Sort(anOrder)

The call to this Avenue Wrap is:
Call SortTwoLists(List1, List2, aMssg, anOrder)

GIVEN: List1 = first list of items to be sorted
List2 = second list of items to be sorted, if only one

list to be sorted specify as NOTHING
aMssg = progress bar message, if no message is

desired specify as NULL
anOrder = the sort order as a Boolean:

True = ascending, and
False = Descending

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim List1 As New Collection, List2 As New Collection
Dim aMssg As Variant, anOrder As Boolean

SortT w oL ists

