
CHAPTER 5
T
H
E
M
E

A
N
D

T
A
B
L
E

T H EM E  A N D  T ABL E
AV EN U E  W RAPS

A
V
E
N
U
E

W
R
A
P
S

his chapter contains Avenue Wraps pertaining to the handling of themes and their
tables including (a) layer (theme) and table creation, retrieval, visibility control and
manipulation, (b) creation and extraction of fields and attributes thereof, (c) extractionT

of lists of records, editing of records and features, and storing of values and shapes, (d)
redrawing of features. (e) querying and summarizing tables, (f) performing calculations on table
cells, and (g) creation of shapefiles and personal geodatabases.

An example has been included at the end of this chapter.  The example demonstrates how to create
a (a) shapefile, and (b) a table, as well as, how to edit, query and summarize the table.

The Avenue Wraps of this chapter are listed below in alphabetical order with a short description
and the chapter - page number where a full description may be found.

◗ avAddFields To add fields into a layer or table 5-27

◗ avAddRecord To add a record into a layer or table 5-33

◗ avCalculate To apply a calculation to a field in a layer or 5-45
table and onto the selected set of records

◗ avCheckEdits To perform checks on the editing of data 5-5

◗ avCreateTable To create a new dBase file from a table using 5-7
data in a cursor, and add it to the document

◗ avFeatureInvalidate To redraw a feature 5-41

◗ avFieldGetType To determine the type of field a field object is 5-27

◗ avFieldMake To create a field that can be added to a layer 5-28
or table



5-2 Avenue Wraps

◗ avFTabExport To export an existing theme in order to create a 5-8
(a) dBase file, (b) ASCII text file or (c) shapefile

◗ avFTabMakeNew To create a new shapefile 5-9

◗ avGetAlias To retrieve the alias assigned to a field for a 5-29
theme or table

◗ avGetFeature To get the feature given a theme and an 5-41
object ID

◗ avGetFeatData To get feature data given a theme and an ID 5-42

◗ avGetFields To get a list of field names for a layer or table 5-29

◗ avGetFTab To get the attribute table, feature class and 5-33
associated layer for a specified theme

◗ avGetFTabIDs To get a list of the object IDs for a layer 5-34

◗ avGetFTabIDs2 To get an array of the object IDs for a layer 5-34

◗ avGetGeometry To get the geometry of a  feature given a theme 5-43
and an object ID

◗ avGetNumRecords To get the number of records in a theme 5-35

◗ avGetPrecision To get the decimal precision of a field 5-30

◗ avGetShapeType To get the default shape type for a theme 5-10

◗ avGetTableRow To get the IRow object given a table and an 5-43
object ID for a record

◗ avGetTables To get a list of the tables in the document 5-11

◗ avGetThemeExtent To get the default shape type for a theme 5-12

◗ avGetUniqueValues To get a list of unique values for a field in a 5-30
theme (layer or table(



Chapter 5 Theme and Table Avenue Wraps 5-3

◗ avGetVTab To get the attribute table of a layer or table 5-36

◗ avGetVTabIDs To get a list of object IDs for a table 5-36

◗ avGetVTabIDs2 To get an array of object IDs for a table 5-37

◗ avInvalidateTOC To refresh the display of the Table of Contents 5-12
for a layer (theme) or table, or for the entire list

◗ avIsCoverage To determine whether a layer (theme) is of the 5-13
coverage type, or not

◗ avIsEditable To determine whether a layer or table is editable 5-13
or not

◗ avIsFTheme To determine whether a layer (theme) is of the 5-14
feature layer type, or not

◗ avIsJoined To determine whether a field has been added to 5-69
a VTab as a result of a Join.

◗ avIsLinked To determine whether a VTab has links (relates 5-69
to other tables) or not.

◗ avIsSDE To determine whether a layer (theme) is of the 5-14
SDE geodatabase type, or not

◗ avIsVisible To determine if an object is visible or not 5-15

◗ avJoin To join aVTab2 to aVTab1 using user specified 5-70
field names.

◗ avLink To link (relate)aVTab2 to aVTab1 using user 5-70
specified field names.

◗ avOpenFeatClass To open a shapefile for editing 5-53

◗ avOpenWorkspace To open a workspace for processing 5-55

◗ avQuery To apply a query to a theme or table 5-46

◗ avRemoveFields To remove fields from a layer or table 5-31



5-4 Avenue Wraps

◗ avReturnValue To retrieve a value from a specific field in a 5-37
specific row of a layer of table

◗ avSetAlias To set an alias for a field for a theme or table 5-32

◗ avSetEditable To start/terminate the editing on a theme/table 5-15
(allows to undo an edit by not stopping the editor)

◗ avSetEditable2 To start or terminate the editing on a theme 5-16
or table (allows to undo an edit by not
stopping the editor)

◗ avSetEditableTheme To start or terminate the editing on a theme 5-17
(allows to undo an edit by not stopping the editor)

◗ avSetValue To store a value in a specific field of a specific 5-38
row of a layer of table

◗ avSetValueG To store a shape in the shape field of a specific 5-39
row of a layer

◗ avSetVisible To set the visibility status of an object 5-17

◗ avStartOperation To start an operation within an edit session 5-18

◗ avStopEditing To terminate the editing on a layer or table 5-18
(stops the editor prohibiting the undo of an edit)

◗ avStopOperation To stop an operation within an edit session 5-19

◗ avSummarize To summarize a theme or a table on a specific 5-47
field

◗ avTableSort To sort an existing table, based upon a field, 5-52
and create a new table

◗ avThemeInvalidate To redraw a theme 5-19

◗ avThemeSetName To set the name or alias of a layert (theme) 5-20



Chapter 5 Theme and Table Avenue Wraps 5-5

◗ avUnJoinAll To remove all joins from a VTab 5-71

◗ avUnLinkAll To remove all links (relates) from from a VTab 5-72

◗ avUpdateAnno To apply transformation to an existing 5-44
annotation feature

◗ avUpdateJoin To update the selection set in aVTab2 to reflect 5-73
the selection set of aVTab1 based upon a
specified join (relate)

◗ avUpdateLink To update the selection set in aVTab2 to reflect 5-73
the selection set of aVTab1 based upon a
specified link (relate)

◗ avUpdateLinks To update the selection sets in all VTabs that 5-74
are linked (related) to aVTab

◗ avVTabExport To export an existing table in order to create a 5-21
new dBase or ASCII text file

◗ avVTabMake To open an existing dBase orASCII text file 5-22

◗ avVTabMakeNew To create a new dBase or text file type table 5-23

◗ CreateAccessDB To create a new personal geodatabase based 5-55
upon information explicitly defined in the calling
arguments (no user interaction)

◗ CreateAnnoClass To create a new annotation feature class in a 5-56
geodatabase

◗ CreateFeatClass To create a new feature class in a geodatabase 5-57

◗ CreateNewGeoDB To create a new personal geodatabase with 5-58
an annotation feature class

◗ CreateNewShapeFile To create a shapefile or personal geodatabase 5-61
based upon user-specified information



5-6 Avenue Wraps

◗ CreateShapeFile To create a new shapefile based upon the 5-64
information explicitly defined in the calling
arguments (no user interaction)

◗ FindLayer To find a layer in a map returning an ILayer 5-23
object

◗ FindTheme To find a layer in a map 5-25

◗ Sample Code Code examples on how to create a shapefile and 5-79
a table, and how to perform various other
operations

The source listing of each of the above Avenue Wraps may be found in Appendix D of this
publication.



Chapter 5 Theme and Table Avenue Wraps 5-7

5.1 Layer (Theme) and Table Related Avenue Wraps

5.1.1 Subroutine avCheckEdits
This subroutine enables the programmer to perform checks on the editing of
data.  This routine first determines whether the editor is in an edit state or not.
If it is not in an edit state, this routine does nothing.  If it is in an edit state,
it checks to see if the given data set is currently being edited.  If it is not, the
routine saves the edits on the data set currently being edited, and starts the
editor on the given data set. If the given data set is currently being edited, the
routine does nothing.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avCheckEdits(pEditor, pDataSet)

GIVEN: pEditor = the ArcMap Editor extension
pDataSet = the data set to be processed.  If the word

NOTHING is specified, and if the editor is in an
edit state, the editor is stopped, and any edits
that may have been made are saved.  If the
editor is in not in an edit state, the routine does
nothing.

RETURN: Nothing

The given and returned variables should be declared where first called as:
Dim pEditor As IEditor
Dim pDataSet As IDataset

5.1.2 Subroutine avCreateTable
This subroutine enables the programmer to create a new dBase file, from an
existing ITable object, and a set of rows (ICursor object) and add the new
dBase file to the document.  In using this subroutine, note the following:
1. If the dBase file to be created exists on the disk, it will be deleted prior

to creating the new file.  The user will not be asked for confirmation
whether the existing file is to be deleted or not.

2. If the given name of the table to be created does not contain a complete

L A YERS
(T H EM ES) a nd

T ABL ES

a v CheckEd its



5-8 Avenue Wraps

pathname, the current working directory will be used.  Some examples of
filName include: c:\project\test\atable.dbf

atable.dbf
3. If the table can not be exported for any reason what so ever, an error

message to that effect will be displayed.
4. This subroutine is called by the avTableSort subroutine.
5. The argument filName can or can not contain the .dbf extension

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avCreateTable(pTable, pCursor, filName)

GIVEN: pTable = the ITable object to be processed
pCursor = the ICursor object containing the data that will

be written to the new .dbf file.
filName = the name of the new dBase file to be created.

RETURN: Nothing

The given and returned variables should be declared where first called as:
Dim pTable As ITable, pCursor As ICursor, filName As String

5.1.3 Function avFTabExport
This function enables the programmer to create a new (a) shapefile, (b) dBase
file or (c) comma delineated text file.  In using this function, note the following:
1. In specifying the name of the new shapefile or table (aFileName), if the

name does not contain a complete path name, the current working
directory will be used.  Some examples of the name include:

c:\project\test\atable c:\project\test\atable.shp
atable atable.shp

The name may or may not contain the extensions .dbf, .txt or .shp
2. If the item to be created, aFileName, exists on disk, it will be deleted, before

the exporting is performed, without informing the user/developer.
3. If selected features are to be exported and there are no selected features,

the entire theme will be exported.
4. If the theme can not be exported for any reason what so ever, avFTabExport

will be set to NOTHING.

L A YERS
(T H EM ES) a nd
T ABL ES

a v C rea teT a b le



Chapter 5 Theme and Table Avenue Wraps 5-9

a v FT a b Exp ort

5. If the new theme or table is not to be added to the map, avFTabExport
will be set to NOTHING.

6. Use the subroutine avInvalidateTOC to refresh the Table of Contents.
7. aTheme and aFileName can not be identical, they must be different, if not

an error is generated.

The corresponding Avenue request is:
newVTab = aFTab.Export (aFileName, aClass, SelRecrds)

The call to this Avenue Wrap is:
newVTab = avFTabExport(aTheme, aFileName, aClass, _

     SelRecrds, addToDoc)

GIVEN: aTheme = the name of the theme to be exported.
aFileName = name of the shapefile or table to be created.
aClass = the type of table to be created.  Specify:

"dBase", "TEXT" or "SHAPE".
SelRecrds = indicator whether selected, or all records of

aTheme are to be exported.  Specify:
• true  to export selected records only.
• false to export all records.

addToDoc = optional indicator which may or may not ap-
pear in the argument list that denotes whether
the new shapefile or table, aFileName, is to be
added to the map.  Specify:
• true  to add the new shapefile or table.
• false to not add.

RETURN: newVTab = the IFields object that is created.

The given and returned variables should be declared where first called as:
Dim aTheme, aFileName, aClass As String
Dim SelRecrds As Boolean, addToDoc As Boolean
Dim newVTab As IFields

5.1.4 Function avFTabMakeNew
This function enables the programmer to create a new shapefile, the name and
type (class) of which are specified by the programmer as given arguments.
In using this function, note the following:
1. Regarding the name of the shapefile:

L A YERS
(T H EM ES) a nd

T ABL ES



5-10 Avenue Wraps

Some examples of a valid shapefile name include:
c:\project\test\l_0ln or c:\project\test\l_0ln.shp
 l_0ln or l_0ln.shp

2. The shapefile name may or may not contain the extension .shp.
3. If the name does not contain a complete path name, the current working

directory will be used.
4. Regarding the shapefile type (class), it may be one of the following:

POINT MULTIPOINT POLYLINE POLYGON
POINTM MULTIPOINTM POLYLINEM POLYGONM
POINTZ MULTIPOINTZ POLYLINEZ POLYGONZ

5. This function creates three fields called FID, SHAPE and ID.
6. Subsequently to this function, the function avAddDoc may be used to

add the shapefile to the map, if need be.
7. If the shapefile to be created exists on the disk, the routine will abort, and

the existing shapefile will not be overwritten

The corresponding Avenue request is:
theNewFTab = FTab.MakeNew (aFileName, aClass)

The call to this Avenue Wrap is:
Set theNewFTab = avFTabMakeNew(aFileName, aClass)

GIVEN: aFileName = name of the shapefile to be created (refer to
notes 1, 2 and 3 above)

aClass = type of shapefile to be created (refer to note 4
above)

RETURN: theNewFTab = feature layer object that is created

The given and returned variables should be declared where first called as:
Dim aFileName, aClass As String
Dim theNewFTab As IFeatureLayer

5.1.5 Function avGetShapeType
This function enables the programmer to get the default shape type for a
theme.  In using this function, note the following:
1. The shapefile type (class), may be one of the following:

POINT MULTIPOINT POLYLINE POLYGON
POINTM MULTIPOINTM POLYLINEM POLYGONM
POINTZ MULTIPOINTZ POLYLINEZ POLYGONZ

L A YERS
(T H EM ES) a nd
T ABL ES

a v FT a b M a keN ew



Chapter 5 Theme and Table Avenue Wraps 5-11

2. The Avenue request corresponding to the subject function operates on
the FTab of a theme, while this VB function operates on the layer (theme).

The corresponding Avenue request is:
anFTab = theTheme.GetFTab
theShapeType = anFTab.GetShapeClass

The call to this Avenue Wrap is:
theShapeType = avGetShapeType(pmxDoc, theTheme)

GIVEN: pmxDoc = the active view
theTheme = the theme to be processed

RETURN: theShapeType = the default shape type of the theme

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theShapeType As esriGeometryType

5.1.6 Subroutine avGetTables
This subroutine enables the programmer to get a list of the names of the tables
in the document, as well as, a list of their corresponding ITable objects.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetTables(pmxDoc, nameList, tableList)

GIVEN: pmxDoc = the active view

RETURN: nameList = list containing the names of the tables in the
document

tableList = list containing ITable objects which corre-
spond to the table names in nameList

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim nameList As New Collection, tableList As New Collection

L A YERS
(T H EM ES) a nd

T ABL ES

a v G etT a b les

a v G etSha p eT yp e



5-12 Avenue Wraps

5.1.7 Subroutine avGetThemeExtent
This subroutine enables the programmer to get the smallest rectangle
enclosing a layer (theme).

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetThemeExtent(pmxDoc, theTheme, theRect)

GIVEN: pmxDoc = the active view
theTheme = the theme to be processed

RETURN: theRect = the smallest rectangle enclosing all of the fea-
tures in theTheme

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theRect As IEnvelope

5.1.8 Subroutine avInvalidateTOC
This subroutine enables the programmer to refresh the display of the Table
of Contents.

The corresponding Avenue request is:
aView.InvalidateTOC(theName)

The call to this Avenue Wrap is:
Call avInvalidateTOC(theName)

GIVEN: theName = name of the theme or table in the Table of
Contents to be refreshed.  If NULL is specified,
the entire Table of Contents will be refreshed.

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim theName As Variant

L A YERS
(T H EM ES) a nd
T ABL ES

a v Inv a lid a teT OC

a v G etT hem eExtent



Chapter 5 Theme and Table Avenue Wraps 5-13

5.1.9 Function avIsCoverage
This function enables the programmer to determine whether a layer (theme)
is stored within a coverage, or not

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
theAnsw = avIsCoverage(theName)

GIVEN: theName = name of input object for which its layer data-
base type is to be determined

RETURN: theAnsw = flag denoting whether the input object is a
coverage  layer (theme) or not
(true = it is, false = it is not a coverage layer)

The given and returned variables should be declared where first called as:
Dim theName As Variant
Dim theAnsw As Boolean

5.1.10 Function avIsEditable
This function enables the programmer to determine if a layer (theme) or table
is editable or not.  Note that in:
• Avenue, the editability status is asked of a Field, FTab or VTab,
• Avenue Wrap, the editability status is asked of a theme, or table name.

To check editability of a Field use the Editable property on a field object:
Avenue Avenue Wraps

col = theVTab.FindField("aField") col = theVTab.FindField("aField")
if (col.IsEditable) then Set pField = theVTab.Field (col)

if (pField.Editable) then

The corresponding Avenue request is:
theAnsw = theFTab.IsEditable

The call to this Avenue Wrap is:
theAnsw = avIsEditable(theName)

GIVEN: theName = name of theme or table for which its editability
status is to be checked

L A YERS
(T H EM ES) a nd

T ABL ES

a v IsE d ita b le

a v IsCov era ge



5-14 Avenue Wraps

RETURN: theAnsw = editability status of the layer or table
(true = is editable, false = is not editable)

The given and returned variables should be declared where first called as:
Dim theName As Variant
Dim theAnsw As Boolean

5.1.11 Function avIsFTheme
This function enables the programmer to determine whether a layer (theme)
is of the feature layer type, or not

The corresponding Avenue request is:
theAnsw = aTheme.Is(FTheme)

The call to this Avenue Wrap is:
theAnsw = avIsFTheme(theName)

GIVEN: theName = name of input object for which its feature layer
type is to be determined

RETURN: theAnsw = flag denoting whether the input object is a
feature layer (theme), or not
(true = it is, false = it is not a feature layer)

The given and returned variables should be declared where first called as:
Dim theName As Variant
Dim theAnsw As Boolean

5.1.12 Function avIsSDE
This function enables the programmer to determine whether a layer (theme)
is stored within a SDE geodatabase, or not

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
theAnsw = avIsSDE(theName)

GIVEN: theName = name of input object for which its layer data-
base type is to be determined

L A YERS
(T H EM ES) a nd
T ABL ES

a v IsSDE

a v IsFT hem e



Chapter 5 Theme and Table Avenue Wraps 5-15

RETURN: theAnsw = flag denoting whether the input object is a SDE
layer (theme) or not
(true = it is, false = it is not a SDE layer)

The given and returned variables should be declared where first called as:
Dim theName As Variant
Dim theAnsw As Boolean

5.1.13 Function avIsVisible
This function enables the programmer to determine if an object is visible or
not.  Note that in:
• Avenue, the visibility status is asked of an object (aTheme),
• Avenue Wrap, the visibility status is asked of a theme name (theName).

The corresponding Avenue request is:
theAnsw = aTheme.IsVisible

The call to this Avenue Wrap is:
theAnsw = avIsVisible(theName)

GIVEN: theName = name of input object for which its visibility
status is to be determined

RETURN: theAnsw = visibility status of the layer
(true = is editable, false = is not editable)

The given and returned variables should be declared where first called as:
Dim theName As Variant
Dim theAnsw As Boolean

5.1.14 Subroutine avSetEditable
This subroutine enables the programmer to start or stop the editing of a layer
(theme) or table.  In using this subroutine, note the following:
• For layers, editing is not terminated (the editor is not stopped), but rather,

any buffered writes are flushed.  This allows the user to undo an edit.
• For tables the editing is terminated.
• To terminate the editing on layers use the subroutine avStopEditing.

The corresponding Avenue request is:
aVTab.SetEditable(eStatus) ' ---FTab or VTab

L A YERS
(T H EM ES) a nd

T ABL ES

a v IsV isib le



5-16 Avenue Wraps

The call to this Avenue Wrap is:
Call avSetEditable(pmxDoc, theTheme, eStatus)

GIVEN: pmxDoc = the active view
theTheme = name of the theme or table to be processed
eStatus = editing status.  Specify:

True  to start editing, or
False to stop editing

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, Status As Boolean

5.1.15 Subroutine avSetEditable2
This subroutine enables the programmer to start or stop the editing of a layer
(theme) and is similar to avSetEditable with the following exceptions:
• The argument list expects two items rather than three.
• An IFeatureLayer object is passed into the subroutine rather than the

name of a layer.
• If the editing is terminated all edits which have been made to the layer

will be committed to disk.

The corresponding Avenue request is:
aFTab.SetEditable(eStatus) ' ---FTab only

The call to this Avenue Wrap is:
Call avSetEditable2(pLayer, eStatus)

GIVEN: pLayer = layer object to be processed
eStatus = editing status.  Specify:

True  to start editing, or
False to stop editing

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pLayer As IFeatureLayer
Dim eStatus As Boolean

L A YERS
(T H EM ES) a nd
T ABL ES

a v SetEd ita b le2

a v SetE d ita b le



Chapter 5 Theme and Table Avenue Wraps 5-17

5.1.16 Subroutine avSetEditableTheme
This subroutine enables the programmer to stop the editing of a layer (theme)
or set the type of task to be performed.  This subroutine operates only on
layers (themes), and can be used to display the handles of a feature.  In using
this subroutine note that the global variable ugSketch is used to keep track
of whether a sketch session is active or not.  If the value of ugSketch = 0, a
sketch session is not active, if ugSketch = 1, a sketch session is active.

The corresponding Avenue request is:
theAnsw = aView.SetEditableTheme(aTheme)

The call to this Avenue Wrap is:
Call avSetEditableTheme(pmxDoc, theTheme, theType)

GIVEN: pmxDoc = the active view
theTheme = name of the theme to be processed, if NULL,

the editor will be stopped saving any edits that
may have been made

theType = the type of task to be performed. Specify:
0 : to stop the current sketch session,
1 : to modify feature,
2 : to create new feature,
9 : same as 0 except assign the current sketch
geometry to the feature that is stored globally
(ugLastFeatureSV), or
NULL : to do nothing

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, theType As Variant

5.1.17 Subroutine avSetVisible
This subroutine enables the programmer to set the visibility status of an
object.

The corresponding Avenue request is:
aTheme.SetVisible (aStatus)

The call to this Avenue Wrap is:
Call avSetVisible(theName, aStatus)

L A YERS
(T H EM ES) a nd

T ABL ES

a v SetV isib le

a v SetE d ita b le
T hem e



5-18 Avenue Wraps

GIVEN: theName = name of input object for which its visibility
status is to be defined

aStatus = the visible state of the input object.  Specify:
true for visible, or
false for not visible

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim theName As Variant
Dim aStatus As Boolean

5.1.18 Subroutine avStartOperation
This subroutine enables the programmer to start an operation within an edit
session.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avStartOperation

GIVEN: nothing

RETURN: nothing

5.1.19 Subroutine avStopEditing
This subroutine enables the programmer to terminate the editing of a layer
(theme) or table.  This subroutine stops the editor committing any edits that
may have been made to the layer (theme) or table, thus prohibiting the undo
of said edits.

The corresponding Avenue request is:
aTable.StopEditing

The call to this Avenue Wrap is:
Call avStopEditing

GIVEN: nothing

RETURN: nothing

L A YERS
(T H EM ES) a nd
T ABL ES

a v Stop E d iting

a v Sta rtOp era tion



Chapter 5 Theme and Table Avenue Wraps 5-19

The given and returned variables should be declared where first called as:

5.1.20 Subroutine avStopOperation
This subroutine enables the programmer to stop an operation within an edit
session.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avStopOperation(oprMssg)

GIVEN: oprMssg = edit operation message that will appear to the
right of the Undo menu item under the Edit
menu item

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim oprMssg As Variant

 NOTE: When the editor is stopped it is not possible to use the Undo
command under the Edit menu item, so that, if the Undo command
is to be used, the Editor must be active (in use).  The subroutine
avStopEditing merely signals that an edit operation has been
completed and that the operation should be added to the Undo list.
It does not terminate the edit session and as such the editor is left
in an active state and the user is able to employ the Undo command,
if need be.

5.1.21 Subroutine avThemeInvalidate
This subroutine enables the programmer to redraw either the entire display
or only that of a theme.

The corresponding Avenue request is:
aTheme.Invalidate(rdStatus)

The call to this Avenue Wrap is:
Call avThemeInvalidate(pmxDoc, theTheme, rdStatus)

L A YERS
(T H EM ES) a nd

T ABL ES

a v T hem eInv a lid a te

a v Stop Op era tion



5-20 Avenue Wraps

GIVEN: pmxDoc = the active view
theTheme = name of theme to be processed
rdStatus = redraw status.  Specify:

True to redraw entire view, or
False to redraw the theme only

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, rdStatus As Boolean

5.1.22 Subroutine avThemeSetName
This subroutine enables the programmer to set the name or alias for a layer
(theme).  The programmer is given the option whether to update, or not the
Table of Contents (TOC) when the alias is assigned to the layer (theme).  This
is controlled by the given variable updateTOC.  If many layers (themes) are
to be modified, it is better to update the TOC at the end of the modifications,
rather than after every single modification.

The corresponding Avenue request is:
theTheme.SetName (newName)

The call to this Avenue Wrap is:
Call avThemeSetName(pmxDoc, theTheme, newName,

updateTOC)

GIVEN: pmxDoc = the active view
theTheme = name of theme to be processed
newName = new name or alias to be assigned to the layer

(theme)
updateTOC = update status True = update the TOC

False = do not update the TOC

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, newName As Variant
Dim updateTOC As Boolean

L A YERS
(T H EM ES) a nd
T ABL ES

a v T hem eSetN a m e



Chapter 5 Theme and Table Avenue Wraps 5-21

5.1.23 Function avVTabExport
This function enables the programmer to export an existing table in order to
create a new dBase or text file type.  In using this function, note the following:
1. In specifying the name of the new table (aFileName), if the name does not

contain a complete path name, the current working directory will be used.
Some examples of a table name include:

c:\project\test\atable c:\project\test\atable.dbf
atable atable.dbf

The name may or may not contain the extension .dbf or .txt
2. If the table to be created, aFileName, exists on disk, it will be deleted,

before the exporting is performed, without informing the user/developer.
3. If selected records are to be exported, and there are no selected records,

the entire table will be exported.  Selected records must be selected
programmatically prior to invoking this function.

4. If the table can not be exported for any reason what so ever, avVTabExport
will be set to NOTHING.

The corresponding Avenue request is:
newTable = aTable.Export (aFileName, aClass, SelRecrds)

The call to this Avenue Wrap is:
newTable = avVTabExport(aTable, aFileName, aClass, _

     SelRecrds)

GIVEN: aTable = the name of the table to be exported.
aFileName = name of the table to be created.
aClass = the type of table to be created.  Specify:

"dBase" or "TEXT".
SelRecrds = indicator whether selected, or all records of

aTable are to be exported.  Specify:
• true  to export selected records only.
• false to export all records.

RETURN: newTable = the table object that is created.

The given and returned variables should be declared where first called as:
Dim aTable, aFileName, aClass As String
Dim SelRecrds As Boolean
Dim newTable As ITable

a v V T a b Exp ort

L AYERS
(T H EM ES) a nd

T ABL ES



5-22 Avenue Wraps

5.1.24 Function avVTabMake
This function enables the programmer to open an existing dBase or text type
file.  In using this function, note the following:
1. If the name of the given file (aFileName) to be opened does not contain

a complete pathname the current working directory will be used.  Some
examples of name include:

c:\project\test\atable c:\project\test\atable.dbf
atable atable.dbf

The extension .dbf or .txt indicates the type of table to be opened.
2. If aFileName does not contain an extension, the procedure assumes that

a dBase file is to be opened .
3. The forWrite and skipFirst given arguments are ignored, as of this

version, and as such they have no impact upon this procedure .
4. If aFileName can not be opened, avVTabMake will be set to NOTHING.
5. After the file has been opened with the subject function, use the function

avAddDoc to add the file's table into the Table of Contents.

The corresponding Avenue request is:
aVTab = VTab.Make (aFileName, forWrite, skipFirst)

The call to this Avenue Wrap is:
aVTab = avVTabMake(aFileName, forWrite, skipFirst, _

  aClass)

GIVEN: aFileName = name of the table to be opened.
forWrite = indicates if the table is to be made editable once

it is opened (see Note 3).
skipFirst = indicates if the first record in the table is to be

ignored (see Note 3).
aClass = type of table to be created.  Specify:

"dBase" or "TEXT".
If this argument is specified it will override any
extension that may appear in aFileName

RETURN: aVTab = table object that is created

The given and returned variables should be declared where first called as:
Dim aFileName As String
Dim forWrite As Boolean, skipFirst As Boolean, aClass As String
Dim aVTab As ITable

L A YERS
(T H EM ES) a nd
T ABL ES

a v V T a b M a ke



Chapter 5 Theme and Table Avenue Wraps 5-23

5.1.25 Function avVTabMakeNew
This function enables the programmer to create a new dBase or text file type
table.  In using this function, note the following:
1. In specifying the name of the new table, if the name does not contain a

complete path name, the current working directory will be used.  Some
examples of a table name include:

c:\project\test\atable c:\project\test\atable.dbf
atable atable.dbf

The name may or may not contain the extension .dbf or .txt
2. Two fields called OID and ID will be created by this routine.
3. The function avAddDoc can be used to add the table to the map, if need

be.
4. If the table to be created exists on disk, the routine will abort, and the

existing table will not be overwritten.

The corresponding Avenue request is:
theNewTable = VTab.MakeNew (aFileName, aClass)

The call to this Avenue Wrap is:
Set theNewTable = avVTabMakeNew(aFileName, aClass)

GIVEN: aFileName = name of the table to be created (see Note 1).
aClass = type of table to be created.  Specify:

dBase or TEXT

RETURN: theNewTable = table object that is created

The given and returned variables should be declared where first called as:
Dim aFileName, aClass As String
Dim theNewTable As ITable

5.1.26 Function FindLayer
This function enables the programmer to find a layer (theme) in a map and will
return an ILayer object if the specified layer is found.  If the layer can not be
found, the returned value will be set to the object, Nothing.  Note that the
functions FindTheme and avFindDoc are similar to this function and may be
of interest to the reader.  In using this function, note the following:

a v V T a b M a keN ew

L A YERS
(T H EM ES) a nd

T ABL ES



5-24 Avenue Wraps

1. The global variable, ugLayer, or Avenue Wraps property, avwraps.Layer,
will contain an ILayer reference to the layer that is found, if a layer is not
found this variable will be set to Nothing.

2. The global variable, ugTable, or Avenue Wraps property, avwraps.Table,
is initialize to the object, Nothing, when this function is called.  If the
avFindDoc function is used and a table is found, ugTable and
avwraps.Table will contain an IStandaloneTable reference to the table.

3. The global variable, ugLayerStrg, or Avenue Wraps propery,
avwraps.LayerString, will contain the name of the layer that is found, if
a layer is not found this variable to be equal to a single blank character.

4. The global variable, ugLayerIndx, or Avenue Wraps propery,
avwraps.LayerIndex, will contain the index value for the location of the
layer in the IMap.Layer property.  So that the statement:

Set theLayer = aMap.Layer(ugLayerIndx), or
Set theLayer = aMap.Layer(avwraps.LayerIndex)

could be used to get an ILayer object.  Index values begin at 0.
5. If a feature layer is found, the global variable, ugpFCls, or Avenue Wraps

propery, avwraps.FeatureClass, will contain an IFeatureClass reference
to the layer, if a layer is not found this variable will be set to Nothing.

6. If a feature layer is found, the global variable, ugWrkSpcType, or Avenue
Wraps propery, avwraps.WrkSpcType, will contain a value represent-
ing the type of workspace that is associated with the layer that was found.
This value and its representation is as follows:
0 A File-based workspace. e.g. coverages, shapefiles
1 A True Geodatabases that are local to your machine, e.g. Access
2 A Geodatabase that requires a remote connection. e.g. SDE, OLE DB

7. If a feature layer is found, the global variable, ugWrkSpcDesc, or Avenue
Wraps propery, avwraps.WrkSpcDesc, will contain a text string repre-
senting the description of the workspace that is associated with the layer
that was found.  This text string and its representation is as follows:
ArcInfo Workspace Denotes an Arc/Info Coverage Layer
PC ArcInfo Workspace Denotes a PC Arc/Info Coverage Layer
CAD Workspace Denotes a DXF, DWG, etc. Layer
Personal Geodatabase Denotes a Personal Geodatabase
Shapefiles Denotes a Shapefile Layer
UNKNOWN If the Layer was not found
Using the global variable or Avenue Wraps property is a good way of
ascertaining what type of layer is being processed.

L A YERS
(T H EM ES) a nd
T ABL ES



Chapter 5 Theme and Table Avenue Wraps 5-25

Find T hem e

Find L a yer

The corresponding Avenue request is:
aTheme = aView.FindTheme (theName)

The call to this Avenue Wrap is:
Set theLayer = FindLayer(aMap, theName)

GIVEN: aMap = map to be searched
theName = name of the layer to be found

RETURN: theLayer = the layer in the map

The given and returned variables should be declared where first called as:
Dim aMap As IMap, theName As Variant
Dim theLayer As ILayer

5.1.27 Function FindTheme
This function enables the programmer to find a layer (theme) in a map.  This
is similar to FindLayer with the exception, it does not return an ILayer object
but rather, it returns a variable of Variant type.  If the layer to be found can
not be found, the returned value will be a single blank character.  The reader
is referred to the notes that appear in the FindLayer description since they
hold true for this function, as well.

The corresponding Avenue request is:
aTheme = aView.FindTheme (theName)

The call to this Avenue Wrap is:
theTheme = FindTheme(aMap, theName)

GIVEN: aMap = map to be searched
theName = name of layer to be found

RETURN: theTheme = the layer in the map

The given and returned variables should be declared where first called as:
Dim aMap As IMap, theName As Variant
Dim theTheme As Variant

Example For example purposes, let us assume that:
• We are developing an application using the Avenue Wraps DLL,
• We have a layer called Theme1 and we wish to determine what type of

layer it is:

L A YERS
(T H EM ES) a nd

T ABL ES



5-26 Avenue Wraps

L A YERS
(T H EM ES) a nd
T ABL ES

The code shown below could be used to accomplish the above task:

Dim pMxApp As IMxApplication
Dim pmxDoc As IMxDocument
Dim pActiveView As IActiveView
Dim pMap As IMap
Dim theTheme As Variant

'
'  ---Get the active view
Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
'  ---Find the theme to be examined
theTheme = FindTheme(pMap, "Theme1")
'
'  ---Use the Avenue Wraps workspace description property
'  ---to determine the type of layer we have
If (UCase(avwraps.WrkSpcDesc) = "ARCINFO WORKSPACE") Then
   MsgBox "An ArcInfo Workspace was found."
'
Elseif(UCase(avwraps.WrkSpcDesc) = "PC ARCINFO WORKSPACE") Then
   MsgBox "A PC ArcInfo Workspace was found."
'
Elseif(UCase(avwraps.WrkSpcDesc) = "CAD WORKSPACE") Then
   MsgBox "A CAD drawing was found."
'
Elseif(UCase(avwraps.WrkSpcDesc) = "PERSONAL GEODATABASE") Then
   MsgBox "A Personal GeoDatabase was found."
'
Elseif(UCase(avwraps.WrkSpcDesc) = "SHAPEFILES") Then
   MsgBox "A Shapefile was found."
'
Elseif(UCase(avwraps.WrkSpcDesc) = "UNKNOWN") Then
   MsgBox "The theme does not exist, or" + _
          "it is not a feature layer."
'
End If



Chapter 5 Theme and Table Avenue Wraps 5-27

5.2 Theme or Table Attribute Field Related Avenue Wraps

5.2.1 Function avAddFields
This function enables the programmer to add attribute fields in a layer (theme)
or table.  In using this function, note the following:
1 In order to add fields into a layer or table, the editor can not be in an edit

state.  Thus this function will stop the editor, saving any changes that
may have been made, prior to adding the fields.

2. In both Avenue and Avenue Wraps, the items in the given collection
(list) are objects, not strings.  Thus, before calling this function, the given
argument, theFields, must be populated with items declared as iField.
The Avenue Wrap avFieldMake may be used to create the iField items.

The corresponding Avenue request is:
anFTab.AddFields (theFields)

The call to this Avenue Wrap is:
errFlag = avAddFields(pmxDoc, theTheme, theFields)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed
theFields = list of fields to be added (see Note 2 above)

RETURN: errFlag = error flag (0 = no error, 1 = error)

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theFields As New Collection
Dim errFlag As Integer

5.2.2 Function avFieldGetType
This function enables the programmer to get the type of field that a field object
is.  In using this function, one of the numbers shown below will be returned
to indicate the type of field object that was processed:

0 : Small Integer 1 : Long Integer
2 : Single-precision float 3 : Double-precision float
4 : String 5 : Date
6 : Long Integer denoting the OID 7 : Geometry
8 : Blob

A T T R IBU T E
FIE L DS

a v A d d Field s



5-28 Avenue Wraps

The corresponding Avenue request is:
theFieldType = aField.GetType

The call to this Avenue Wrap is:
theFieldType = avFieldGetType(pField)

GIVEN: pField = field object to be processed

RETURN: theFieldType = numeric value denoting type of field (see above)

The given and returned variables should be declared where first called as:
Dim pField As iField
Dim theFieldType As esriFieldType

5.2.3 Function avFieldMake
This function enables the programmer to create a field that can be added to
a layer (theme) or table.  In using this function, note the following:
1. Specify the key word below for the argument aFieldType to denote the

indicated type of field object:
BYTE Small Integer CHAR  String
DATE Date DECIMAL Single
DOUBLE Double FLOAT Single
ISODATE Date ISODATETIME Date
ISOTIME Date LOGICAL String
LONG Integer MONEY Double
SHORT Small Integer BLOB Blob
VCHAR String

2. This routine can not be used to create a geometry field.
3. The first 10 characters in aName are used.  Use avSetAlias after the table

has been created to define the desired full field name.

The corresponding Avenue request is:
theNewField = Field.Make(aName, aFieldType, nchr, ndr)

The call to this Avenue Wrap is:
Set theNewField = avFieldMake(aName, aFieldType, nchr, ndr)

GIVEN: aName = name of field to be created
aFieldType  = type of field to be created (see Note 1 above)
nchr = total character width of field including decimal

point and negative sign, if they are to appear
in the field

A T T R IBU T E
FIE L DS

a v Field G etT yp e

a v Field M a ke



Chapter 5 Theme and Table Avenue Wraps 5-29

A T T R IBU T E
FIE L DS

a v G etA lia s

ndr = number of digits to the right of the decimal
point.  Specify 0 for non-numeric fields

RETURN: theNewField = field object that was created

The given and returned variables should be declared where first called as:
Dim aName, aFieldType As String, nchr As Long, ndr As Long
Dim theNewField As IFieldEdit

5.2.4 Function avGetAlias
This subroutine enables the programmer to retrieve the alias that has been
assigned to a field for a layer or a table.  The current layer or table is processed.
The global variables ugLayer and ugTable represent the current layer and
table, while the Avenue Wraps  properties, avwraps.Layer and avwraps.Table,
represent the current layer and table when using the Avenue Wraps DLL.  The
subroutines avGetFTab or avGetVTab can also be used to establish the
current layer or table.

The corresponding Avenue request is:
aField.GetAlias(anAlias)

The call to this Avenue Wrap is:
anAlias = avGetAlias(col)

GIVEN: col = index value representing the field that an alias
is to be assigned to

RETURN: anAlias = the string representing the alias to be assigned
to the field

The given and returned variables should be declared where first called as:
Dim col As Long
Dim anAlias As String

5.2.5 Subroutine avGetFields
This subroutine enables the programmer to get a list of attribute field names
for a layer (theme) or table.  These are not the alias names for the fields.

The corresponding Avenue request is:
theList = aVTab.GetFields



5-30 Avenue Wraps

The call to this Avenue Wrap is:
Call avGetFields(theVTab, theList)

GIVEN: theVTab = field list for the theme or table

RETURN: theList = list of field names for an attribute table

The given and returned variables should be declared where first called as:
Dim theVTab As IFields
Dim theList As New Collection

5.2.6 Function avGetPrecision
This function enables the programmer to get the decimal precision for a field.
This is the number of digits to the right of the decimal point.  This function
always returns zero for fields contained in a personal geodatabase.

The corresponding Avenue request is:
aNumb = aField.GetPrecision

The call to this Avenue Wrap is:
aNumb = avGetPrecision(theVTab, fieldIndex)

GIVEN: theVTab = field list for the theme or table
fieldIndex = index of the field to be processed

RETURN: aNumb = decimal precision for the field

The given and returned variables should be declared where first called as:
Dim theVTab As IFields
Dim fieldIndex As Long
Dim aNumb As Long

5.2.7 Subroutine avGetUniqueValues
This subroutine enables the programmer to get a list of the unique values for
a specific field in a theme (layer) or table.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetUniqueValue(pmxDoc, theTheme, aField, aList)

A T T R IBU T E
FIE L DS

a v G etPrecision

a v G etField s



Chapter 5 Theme and Table Avenue Wraps 5-31

a v Rem ov eField s

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed
aField = field for which unique values are desired

RETURN: aList = list of unique values (this list is not sorted)

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, aField As String
Dim aList As New Collection

5.2.8 Function avRemoveFields
This function enables the programmer to remove attribute fields from a layer
(theme) or table.  In using this function, note the following:
1. In order to remove fields from a layer or table, the editor can not be in an

edit state.  Thus, this routine will stop the editor, saving any changes that
may have been made, prior to removing the fields

2. If an invalid index value appears in the list, -1, it will be ignored (an error
is not generated)

3. Do not use this routine to delete the SHAPE field
4. The items in the given argument list, theFields, are numeric index values

(not objects) for the fields to be deleted.

The corresponding Avenue request is:
aVTab.RemoveFields(theFields)

The call to this Avenue Wrap is:
errFlag = avRemoveFields(pmxDoc, theTheme, theFields)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed
theFields = list of fields to be removed (see Note 4 above)

RETURN: errFlag  = error flag (0 = no error, 1 = error detected)

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, theFields As New Collection
Dim errFlag As Integer

A T T R IBU T E
FIE L DS

a v G etUniqueV a lues



5-32 Avenue Wraps

A T T R IBU T E
FIE L DS

5.2.9 Subroutine avSetAlias
This subroutine enables the programmer to assign an alias to a field for a layer
or a table.  The current layer or table is processed.  The global variables
ugLayer and ugTable represent the current layer and table, while the Avenue
Wraps  properties, avwraps.Layer and avwraps.Table, represent the current
layer and table when using the Avenue Wraps DLL.  The subroutines
avGetFTab or avGetVTab can also be used to establish the current layer or
table.

The corresponding Avenue request is:
aField.SetAlias(anAlias)

The call to this Avenue Wrap is:
Call avSetAlias(col, anAlias)

GIVEN: col = index value representing the field that an alias
is to be assigned to

anAlias = the string representing the alias to be assigned
to the field

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim col As Long
Dim anAlias As String

a v SetA lia s



Chapter 5 Theme and Table Avenue Wraps 5-33

5.3 Theme or Table Record Related Avenue Wraps

5.3.1 Function avAddRecord
This function enables the programmer to add a record into a layer (theme) or
table.

The corresponding Avenue request is:
theRecordID = aVTab.AddRecord

The call to this Avenue Wrap is:
theRecordID = avAddRecord(pmxDoc, theTheme)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed

RETURN: theRecordID = the ID of the record that was added.  If a
record can not be added it will be -1.

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theRecordID As Long

5.3.2 Subroutine avGetFTab
This subroutine enables the programmer to get the attribute table, feature
class and associated layer (theme) for a specified theme.  Note that if a table,
rather than a theme, is specified, the values for the theFeatureClass and
theLayer arguments will be set to Nothing, while theFTab object will reflect
the attributes for the table.

The corresponding Avenue request is:
theFTab = aTheme.GetFTab

The call to this Avenue Wrap is:
Call avGetFTab(pmxDoc, theTheme, _

theFTab, theFeatureClass, theLayer)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed

L AYER (T H EM E)
a nd  T ABL E
RECORDS

a v A d d Record

a v G etFT a b



5-34 Avenue Wraps

RETURN: theFTab = the attribute table for the theme
theFeatureClass = the feature class for the theme
theLayer = the associated layer for the theme

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTheme As Variant
Dim theFTab As IFields, theFeatureClass As IFeatureClass
Dim theLayer As IFeatureLayer

5.3.3 Subroutine avGetFTabIDs
This subroutine enables the programmer to get a list of the object identifica-
tion numbers (OIDs) for a layer (theme).

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetFTabIDs(pmxDoc, theTheme, theRecsList)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed

RETURN: theRecsList = the list of OIDs for the layer (theme)

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTheme As Variant
Dim theRecsList As New Collection

5.3.4 Subroutine avGetFTabIDs2
This subroutine enables the programmer to build an array which contains the
object identification numbers (OIDs) for all of the features in a layer (theme).
This subroutine is identical to avGetFTabIDs with the exception that an array
is passed back rather than a collection.  In using this subroutine, note the
following:
1. The first OID appears in the first element of the array and can be accessed

as shown below:
firstOID = theRecsArray(1)

2. To determine the number of elements in the array use the function,
UBound, as shown below:

totalIDs = UBound(theRecsArray)

L AYER (T H EM E)
a nd  T ABL E
RECORDS

a v G etFT a b IDs



Chapter 5 Theme and Table Avenue Wraps 5-35

L AYER (T H EM E)
a nd  T ABL E
RECORDS

a v G etN um Record s

3. If the array can not be built, the number of elements in the array will be
one and the value of the first element in the array will be set to -1.

4. Arrays process faster than lists, as such use this subroutine rather than
avGetFTabIDs when the layer contains a large number of features.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetFTabIDs2(pmxDoc, theTheme, theRecsArray)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed

RETURN: theRecsArray = the array of OIDs for the layer (theme)

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTheme As Variant
Dim theRecsArray() As Long

5.3.5 Function avGetNumRecords
This function enables the programmer to get the number of records in a layer
(theme), or table.

The corresponding Avenue request is:
numRecs = aVTab.GetNumRecords

The call to this Avenue Wrap is:
numRecs = avGetNumRecords(pmxDoc, theTheme)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed

RETURN: numRecs = number of records in the theme or table

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim numRecs As Long

a v G etFT a b IDs2



5-36 Avenue Wraps

5.3.6 Subroutine avGetVTab
This subroutine enables the programmer to get the attribute table for a layer
(theme) or table.

The corresponding Avenue request is:
theVTab = aTable.GetVTab

The call to this Avenue Wrap is:
Call avGetVTab(pmxDoc, theTheme, theVTab)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed

RETURN: theVTab = the attribute table for the theme or table

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTheme As Variant
Dim theVTab As IFields

5.3.7 Subroutine avGetVTabIDs
This subroutine enables the programmer to get a list of the object identifica-
tion numbers (OIDs) for a table.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetVTabIDs(pmxDoc, theTable, theRecsList)

GIVEN: pmxDoc = the active view
theTable = the table to be processed

RETURN: theRecsList = the list of object identification numbers (OIDs)
for the table

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTable As Variant
Dim theRecsList As New Collection

L AYER (T H EM E)
a nd  T ABL E
RECORDS

a v G etV T a b

a v G etV T a b IDs



Chapter 5 Theme and Table Avenue Wraps 5-37

5.3.8 Subroutine avGetVTabIDs2
This subroutine enables the programmer to build an array which contains the
object identification numbers (OIDs) for all of the records in a table.  This
subroutine is identical to avGetVTabIDs with the exception that an array is
passed back rather than a collection.  In using this subroutine, note the
following:
1. The first OID appears in the first element of the array and can be accessed

as shown below:
firstOID = theRecsArray(1)

2. To determine the number of elements in the array use the function,
UBound, as shown below:

totalIDs = UBound(theRecsArray)
3. If the array can not be built, the number of elements in the array will be

one and the value of the first element in the array will be set to -1.
4. Arrays process faster than lists, as such use this subroutine rather than

avGetVTabIDs when the table contains a large number of records.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetVTabIDs2(pmxDoc, theTable, theRecsArray)

GIVEN: pmxDoc = the active view
theTable = the table to be processed

RETURN: theRecsArray = the array of OIDs for the table

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTable As Variant
Dim theRecsArray() As Long

5.3.9 Function avReturnValue
This subroutine enables the programmer to retrieve a value from a specific
field in a specific row of a layer (theme) or table.  In using this subroutine, note
the following:
1. Do not use this function to retrieve geometry from the SHAPE field.  Use

this subroutine to retrieve attribute information only (see avGetFeature
for how to extract the geometry of a feature).

L AYER (T H EM E)
a nd  T ABL E
RECORDS

a v G etV T a b IDs2



5-38 Avenue Wraps

2. If an error is detected avReturnValue will be set to NULL.

The corresponding Avenue request is:
anObj = aVTab.ReturnValue (aField, aRecord)

The call to this Avenue Wrap is:
anOb = avReturnValue(pmxDoc, theTheme, aField, aRecordj)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed
aField = field to be written to
aRecord = record of theme or table to be processed

RETURN: anObj = object to be stored (attribute information only,
no geometry)

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTheme As Variant
Dim aField As Long
Dim aRecord As Long
Dim anObj As Variant

5.3.10 Subroutine avSetValue
This subroutine enables the programmer to store a value in a specific field of
a specific row of a layer (theme) or table.  In using this subroutine, note the
following:
1. Do not use this subroutine to store geometry in the SHAPE field.  Use

this subroutine to store attribute information only.
2. To store geometry in the SHAPE field, use the subroutine avSetValueG.
3. While in Avenue the same request may be used to write attribute

information and geometry, there are two distinct Avenue Wrap requests
because of there are two distinct interfaces in ArcObjects.

4. While the Avenue request operates on an FTab or VTab, the Avenue
Wrap operates on a layer (theme) or table name.

5. This procedure does not write the record, aRecord, to disk until the
procedure is called with the argument, anObj, set to "StoreRec".  This is
done to eliminate multiple disk writes thereby yielding increased perfor-
mance (see the avSetValueG description for an alternative to calling this
subroutine with the argument, anObj, set to "StoreRec").

L AYER (T H EM E)
a nd  T ABL E
RECORDS

a v ReturnV a lue



Chapter 5 Theme and Table Avenue Wraps 5-39

L AYER (T H EM E)
a nd  T ABL E
RECORDS

6. When the argument, anObj, is set to "StoreRec", the argument, aField,
is ignored.

The corresponding Avenue request is:
aVTab.SetValue (aField, aRecord, anObj)

The call to this Avenue Wrap is:
Call avSetValue(pmxDoc, theTheme, aField, aRecord, anObj)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed
aField = field to be written to
aRecord = record of theme or table to be processed
anObj = object to be stored (attribute information only,

no geometry)

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim aField, aRecord As Long
Dim anObj As Variant

5.3.11 Subroutine avSetValueG
This subroutine enables the programmer to store a shape in the SHAPE field
of a specific row of a layer (theme).  In using this subroutine, note the
following:
1. Do not use this subroutine to store attribute information.  Use this

subroutine to store geometry in the SHAPE field only.
2. To store attribute information, use the subroutine avSetValue.
3. While in Avenue the same request may be used to write attribute

information and geometry, there are two distinct Avenue requests
because of there are two distinct interfaces in ArcObjects.

4. While the Avenue request operates on an FTab or VTab, the Avenue
Wrap operates on a layer (theme) name.

5. This procedure writes the record to disk after the shape has been stored.
6. Calling this procedure after calling avSetValue eliminates the need to call

avSetValue with the anObj argument set to "StoreRec" because this
procedure writes the record to disk.

a v SetV a lue



5-40 Avenue Wraps

L AYER (T H EM E)
a nd  T ABL E
RECORDS

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avSetValueG(pmxDoc, theTheme, aField, aRecord, aShape)

GIVEN: pmxDoc = the active view
theTheme = the theme or table to be processed
aField = field to be written to
aRecord = record of theme or table to be processed
aShape = shape to be stored (geometry only, no attribute

information only)

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim aField As Long, aRecord As Long
Dim aShape As IGeometry

a v SetV a lueG



Chapter 5 Theme and Table Avenue Wraps 5-41

5.4 Feature Handling Related Avenue Wraps

5.4.1 Subroutine avFeatureInvalidate
This subroutine enables the programmer to redraw a feature.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avFeatureInvalidate(pmxDoc, theFeature)

GIVEN: pmxDoc = the active view
theFeature = the feature to be redrawn

RETURN: Nothing

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theFeature As IFeature

5.4.2 Subroutine avGetFeature
This subroutine enables the programmer to get a feature given a layer (theme)
and an object ID.  Use the Shape property of the IFeature object to get the
feature's geometry and the Value property to simulate the ReturnValue
Avenue request (see page D-2 for an example).  Use the subroutine
avGetTableRow when processing a table (VTab).

The corresponding Avenue request is:
theFeature = aFTab.ReturnValue ("shape", theObjId)

The call to this Avenue Wrap is:
Call avGetFeature(pmxDoc, theTheme, theObjId, theFeature)

GIVEN: pmxDoc = the active view
theTheme = name of the theme to be processed
theObjId = the object id of the desired feature

RETURN: theFeature = the feature

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant, theObjId As Long
Dim theFeature As IFeature

a v Fea ture
Inv a lid a te

FEAT U R E
H A N D L IN G

a v G etFea ture



5-42 Avenue Wraps

a v G etFea tD a ta

FEAT U R E
H A N D L IN G

5.4.3 Subroutine avGetFeatData
This subroutine enables the programmer to get the feature data of a given
layer (theme) and object ID.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetFeatData(pmxDoc, theTheme, theObjId, _

theFeature, theShape, shapeType)

GIVEN: pmxDoc = the active view
theTheme = name of the theme to be processed
theObjId = the object id of the desired feature

RETURN: theFeature = the feature
theShape = the geometry of a feature
shapeType = the shape type of a feature

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theObjId As Long
Dim theFeature As IFeature
Dim theShape As IGeometry
Dim shapeType As esriGeometryType

With Avenue
aVTab = aTable.GetVTab
colA = aVTab.FindField("area")
theArea = aVTab.ReturnValue(colA, rec)

With Avenue Wraps
Dim pmxDoc As esricore.IMxDocument
Dim aTable As Variant
Dim aVTab As esricore.IFields
Dim rec As Long, colA As Long
Dim pRow As esricore.IRow
Dim theArea As Double
Call avGetVTab(pmxDoc, aTable, aVTab)
Call avGetTableRow(pmxDoc, aTable, rec, pRow)
colA = aVTab.FindField("area")
theArea = pRow.Value(colA)

Sample Code illustrating ReturnValue Simulation on a VTab



Chapter 5 Theme and Table Avenue Wraps 5-43

a v G etG eom etry

5.4.4 Subroutine avGetGeometry
This subroutine enables the programmer to get the geometry of a feature
given its layer (theme) and object ID.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetGeometry(pmxDoc, theTheme, theObjId, theShape)

GIVEN: pmxDoc = the active view
theTheme = name of the theme to be processed
theObjId = the object id of the desired feature

RETURN: theShape = the geometry of a feature

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theObjId As Long
Dim theShape As IGeometry

5.4.5 Subroutine avGetTableRow
This subroutine enables the programmer to get the IRow object given the
name of a table and an object ID.  Use avGetFeature when processing a theme.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avGetTableRow(pmxDoc, theTheme, theObjId, theRow)

GIVEN: pmxDoc = the active view
theTable = name of the table to be processed
theObjId = the object id of the desired record

RETURN: theRow = the IRow object

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim theObjId As Long
Dim theRow As IRow

FEAT U R E
H A N D L IN G

a v G etT a b leRow



5-44 Avenue Wraps

5.4.6 Subroutine avUpdateAnno
This subroutine enables the programmer to apply a transformation to an
existing annotation feature (a feature in a feature annotation layer).  In using
this subroutine, note the following:
1. The rotation angle is added to the existing angle of the annotation

(positive value denotes a counter-clockwise rotation, while a negative
value denotes a clockwise rotation).

2. A scale factor greater than 1.0 increases the size of the annotation, while
a value less than 1.0 decreases the size.

3. The X scale factor is always used in the scaling process, the Scale method
does not seem to work as it should on Annotation features when the X
and Y scale factors are different.

4. The layer that the feature resides in must be in an editable state.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avUpdateAnno(pFeature, oldX, oldY, newX, newY, _

rotang, scaleX, scaleY, newFeature)

GIVEN: pFeature = the annotation feature to be modified
oldX, oldY = the coordinates of the feature's control point
newX, newY = the new coordinates of the feature's control

point
rotang = the rotation angle in degrees to be added to

the existing angle of the feature
scaleX = the X axis scale factor (greater than 0.0)
scaleY = the Y axis scale factor (greater than 0.0)

RETURN: newFeature = the new feature reflecting the transformation

The given and returned variables should be declared where first called as:
Dim pFeature As IFeature
Dim oldX, oldY, newX, newY, rotang, scaleX, scaleY As Double
Dim newFeature As IFeature

FEAT U R E
H A N D L IN G

a v U p d a teAnno



Chapter 5 Theme and Table Avenue Wraps 5-45

5.5 Calculating, Querying and Summarizing
Layers (Themes) and Tables Related Avenue Wraps

5.5.1 Function avCalculate
This function enables the programmer to apply a calculation to a set of
selected records for a specified field in a layer (theme) or table.  If no records
are selected, the entire layer (theme) or table is processed.  Sample calculation
strings are shown below.  Note how the field names are handled depending
upon the type of field being processed.  The source code listing, presented
in Appendix D, contains more detailed information pertaining to this function.
• Shapefile and Personal Geodatabase String field calculation:

aCalcString = """abcd"""
• Shapefile and Personal Geodatabase Numeric field calculation:

aCalcString = "([ID] - " + CStr(i) + ")"

The corresponding Avenue request is:
errFlag = aVTab.Calculate(aCalcString, aField)

The call to this Avenue Wrap is:
errFlag = avCalculate(pmxDoc, theTheme, aCalcString, aField)

GIVEN: pmxDoc = the active view
theTheme = name of theme or table to be processed
aCalcString = calculation string to be applied (see above)
aField = index value of the field to be populated.  Index

value is between 0 and n-1, where n is the total
number of fields.

RETURN: errFlag = error flag as noted below
0 : no error
1 : theme or table not found
2 : error in performing calculation
3 : no records selected
4 : an edit session has not been started

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim theTheme As Variant
Dim aCalcString As String, aField As Long
Dim avCalculate As Integer

a v C a lcula te

C A L C U L A T E
QUERY a nd
SU M M A RIZE



5-46 Avenue Wraps

5.5.2 Subroutine avQuery
This subroutine enables the programmer to apply a query string to a layer
(theme) or table.  Sample query strings are shown below.  Note how the field
names are handled depending upon the type of field and the data source.
• Shapefile String field queries are case sensitive:

aQueryString = """PTCODE""" + " = 'BBBB'"
• Personal Geodatabase String field queries are case insensitive:

aQueryString = "PTCODE = 'bbbb'"
• Shapefile and Personal Geodatabase Numeric field query:

aQueryString = "SLN >= 10"
In using this function, note the following:
1. Use avGetSelection to get the selection set representing the query result.
2. The query is applied even if the theme or layer is set to be not selectable.
3 An automation error message will be generated if the supplied query is

invalid, for example (a) if the query string is built for a numeric field but
the field is actually a string field, or (b) an attribute in the query does not
exist in the theme or table being queried.

4. If the theme or table has a join the names of the fields in the query string
must be prefixed with the name of the theme or table, for example, if layer
ABCD has a join and an attribute called 123, the attribute should appear
as "ABCD.123" in the query string.

The corresponding Avenue request is:
errFlag = aVTab.Query(aQueryString, selSet, setType)

The call to this Avenue Wrap is:
Call avQuery(pmxDoc, theTheme, aQueryString, selSet, setType)

GIVEN: pmxDoc = the active view
theTheme = name of theme or table to be processed
aQueryString = query string to be applied (see above)
selSet = theme selection set
setType = type of selection desired

• "NEW" : new selection set
• "ADD" : add to current selection set
• "AND" : select from current selection set

RETURN: nothing Performs the query.  Use the avGetSelection
(see Chapter 6) to get the selection set contain-
ing the results of the query.

a v Query

C A L C U L A T E
QUERY a nd
SU M M A RIZE



Chapter 5 Theme and Table Avenue Wraps 5-47

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument
Dim elmntTheme As Variant, aQueryString As String
Dim selSet As ISelectionSet, setType As String

5.5.3 Function avSummarize
This function enables the programmer to summarize a layer (theme) or table
on a specified field.  In using this function, note the following:
1. If a theme is to be created and a path is specified in the input argument,

aFileName, the theme will be stored in the specified path, if a table is to
be created, it will be stored in the workspace of the theme or table that
is being summarized, so that, in this case do not specify a full pathname
and do not include an extension such as .dbf.  If an extension appears
in the name it will be removed with no error generated.

2. The type of summary (operation codes) to be performed on the items in
the fieldList should be one of the following key words enclosed in double
quotes:

"Count" "Minimum" "Maximum" "Sum" "Average"
"Variance" "StdDev" "Dissolve" (for use on the Shape field)

3. Since this routine passes NOTHING to theSumTable if an error is
detected, make certain to check for this in the code that calls this function.

4. The number of items in the fieldList should be the same with that of the
sumryList.  If one of them is empty, so must be the other one.

5. If fieldList and sumryList are empty lists, or if they are passed in as
NOTHING, the following default values will be used:
• fieldList will contain two items each one being the value of aField.
• The sumryList will contain two items, the first being the number of

unique values within all rows of aField, and the second being the
maximum unique value within all rows of aField.

6. If the theme or table to be created exists on the disk, the routine will
overwrite the existing theme or table without asking or informing the user.

The corresponding Avenue request is:
theSumTable = aVTab.Summarize(aFileName, aType, aField,

fieldList, sumryList)

The call to this Avenue Wrap is:
Set theSumTable = avSummarize(pmxDoc, theTheme,

aFileName, aType, aField, fieldList,
sumryList)

C A L C U L A T E
QUERY a nd
SU M M A RIZE

a v Sum m a rize



5-48 Avenue Wraps

GIVEN: pmxDoc = the active view
theTheme = name of theme or table to be processed (see

Note 1 above)
aFileName = string name of the output table theSumTable to

be created (see Notes 1 and  6 above)
aType = type of output table, "dBase" or "Shape".
aField = field that the theme or table is summarized on
fieldList = additional fields to be summarized (see Note 4)
sumryList = operation codes to be performed on the items

in the fieldList (see Notes 2 and 4)

RETURN: theSumTable = the object summary table, whose name is that
of aFileName.  If an error is detected during the
processing, the keyword NOTHING will be
returned and a message to that effect will be
displayed.

The given and returned variables should be declared where first called as:
Dim pmxDoc As IMxDocument, theTheme As Variant
Dim aFileName As String, aType As String, aField As String
Dim fieldList As New Collection, sumryList As New Collection
Dim theSumTable As ITable

Example 1 For example purposes, let us assume that:
• The table to be summarized is called "SchoolZones", and contains the

data shown in Table 5-1(A),
• We wish to summarize on the field ZONE to obtain:
• (a) a count of the unique zone identification values, (b) maximum area per

unique zone, and (c) minimum perimeter per unique zone.
• The summary table that is to be created is to be called "Zones" and should

be of dBase format.
The call to the Avenue Wrap would be:
Call CreateList(fieldList)
fieldList.Add("ZONE")
fieldList.Add("ZONE")
fieldList.Add("AREA")
fieldList.Add("PERIM")
Call CreateList(sumryList)
sumryList.Add("Count")
sumryList.Add("Maximum")
sumryList.Add("Maximum")
sumryList.Add("Minimum")

C A L C U L A T E
QUERY a nd
SU M M A RIZE



Chapter 5 Theme and Table Avenue Wraps 5-49

Set aSTable = avSummarize(pmxDoc, "SchoolZones", _
                      "Zones", "dBase", "ZONE", _
                      fieldList, sumryList)
Shown in Table 5-1(B) are the results of the above summation.

The sample code on the following pages illustrates how the table could be
created, records added, populated and summarized programmatically.

Example 2 Now let us consider the same table of Example 1, but with
both the fieldList and sumryList arguments passed in as empty lists.
The call to the Avenue Wrap would then be:
Call CreateList(fieldList)
Call CreateList(sumryList)
Set aSTable = avSummarize(pmxDoc, "SchoolZones", _
                      "Zones", "dBase", "ZONE", _
                      fieldList, sumryList)
Shown in Table 5-1(C) are the results of the above summation.

C A L C U L A T E
QUERY a nd
SU M M A RIZE

Table 5-1(A)   Sample Table to Be Summarized

Table 5-1(B)   Sample Table Summarized as per Example 1

Table 5-1(C)   Sample Table Summarized as per Example 2



5-50 Avenue Wraps

'
'  ---
'  ---VBA code that is associated with Example 1 illustrating how to
'  ---create, add records, populate and summarize a table
'  ---
'
   Dim pMxApp As IMxApplication, pmxDoc As IMxDocument
   Dim pActiveView As IActiveView, pMap As IMap
   Dim sTblName, sTblPthName As String
   Dim iok As Integer
   Dim pTable As ITable
   Dim irec As Long
   Dim pFld1 As IFieldEdit, pFld2 As IFieldEdit, pFld3 As IFieldEdit
   Dim fldList As New Collection
   Dim theVTab As IFields
   Dim col1, col2, col3 As Long
   Dim sumTblName As String
   Dim fieldList1 As New Collection, sumryList2 As New Collection
   Dim pSTable As ITable
'
'  ---Get the active view
   Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
'  ---Define the name of the table to be created
   sTblName = "SchoolZones.dbf"
'
'  ---Define the full pathname of the table
   sTblPthName = "c:\temp\" + sTblName
'
'  ---Delete the table if it exists
   If (avFileExists(sTblPthName)) Then
      iok = avFileDelete(sTblPthName)
   End If
'
'  ---Create a dBase table
   Set pTable = avVTabMakeNew(sTblPthName, "dbase")
'
'  ---Make sure the table was created
   If (Not pTable Is Nothing) Then
'
'     ---Add the table to the map, the .dbf extension will not
'     ---appear in the table of contents (TOC)
      iok = avAddDoc(pTable)
'
'     ---Add six records to the table
      irec = avAddRecord(pmxDoc, sTblName)
      irec = avAddRecord(pmxDoc, sTblName)
      irec = avAddRecord(pmxDoc, sTblName)
      irec = avAddRecord(pmxDoc, sTblName)
      irec = avAddRecord(pmxDoc, sTblName)
      irec = avAddRecord(pmxDoc, sTblName)
'
'     ---Create three fields to be added to the table
      Set pFld1 = avFieldMake("ZONE", "VCHAR", 3, 0)
      Set pFld2 = avFieldMake("AREA", "DOUBLE", 12, 4)
      Set pFld3 = avFieldMake("PERIM", "DOUBLE", 12, 4)
'
'     ---Add the fields to a list
      Call CreateList(fldList)
      fldList.Add pFld1
      fldList.Add pFld2
      fldList.Add pFld3
'
'     ---Add the field list to the table
      iok = avAddFields(pmxDoc, sTblName, fldList)

C A L C U L A T E
QUERY a nd
SU M M A RIZE



Chapter 5 Theme and Table Avenue Wraps 5-51

'
'     ---Get the attribute table
      Call avGetVTab(pmxDoc, sTblName, theVTab)
'
'     ---Make the table editable since when it is added to
'     ---the map, it will not be editable
      Call avSetEditable(pmxDoc, sTblName, True)
'
'     ---Store the values for all six records that were added
      col1 = theVTab.FindField("ZONE")
      col2 = theVTab.FindField("AREA")
      col3 = theVTab.FindField("PERIM")
      Call avSetValue(pmxDoc, sTblName, col1, 0, "C-2")
      Call avSetValue(pmxDoc, sTblName, col2, 0, 15.349)
      Call avSetValue(pmxDoc, sTblName, col3, 0, 3270.72)
      Call avSetValue(pmxDoc, sTblName, col3, 0, "StoreRec")
      Call avSetValue(pmxDoc, sTblName, col1, 1, "R-4")
      Call avSetValue(pmxDoc, sTblName, col2, 1, 21.537)
      Call avSetValue(pmxDoc, sTblName, col3, 1, 3874.33)
      Call avSetValue(pmxDoc, sTblName, col3, 1, "StoreRec")
      Call avSetValue(pmxDoc, sTblName, col1, 2, "A-2")
      Call avSetValue(pmxDoc, sTblName, col2, 2, 18.968)
      Call avSetValue(pmxDoc, sTblName, col3, 2, 3635.92)
      Call avSetValue(pmxDoc, sTblName, col3, 2, "StoreRec")
      Call avSetValue(pmxDoc, sTblName, col1, 3, "C-2")
      Call avSetValue(pmxDoc, sTblName, col2, 3, 14.663)
      Call avSetValue(pmxDoc, sTblName, col3, 3, 1023.03)
      Call avSetValue(pmxDoc, sTblName, col3, 3, "StoreRec")
      Call avSetValue(pmxDoc, sTblName, col1, 4, "C-2")
      Call avSetValue(pmxDoc, sTblName, col2, 4, 17.318)
      Call avSetValue(pmxDoc, sTblName, col3, 4, 3474.18)
      Call avSetValue(pmxDoc, sTblName, col3, 4, "StoreRec")
      Call avSetValue(pmxDoc, sTblName, col1, 5, "R-4")
      Call avSetValue(pmxDoc, sTblName, col2, 5, 16.259)
      Call avSetValue(pmxDoc, sTblName, col3, 5, 3366.28)
      Call avSetValue(pmxDoc, sTblName, col3, 5, "StoreRec")
'
'     ---Commit the modifications to disk
      Call avSetEditable(pmxDoc, sTblName, False)
'
'     ---Define the name of the summary table to be created
      sumTblName = "Zones"
'
'     ---Define fields and operations to be used in summarization
      Call CreateList(fieldList1)
      fieldList1.Add ("ZONE")
      fieldList1.Add ("ZONE")
      fieldList1.Add ("AREA")
      fieldList1.Add ("PERIM")
      Call CreateList(sumryList2)
      sumryList2.Add ("Count")
      sumryList2.Add ("Maximum")
      sumryList2.Add ("Maximum")
      sumryList2.Add ("Minimum")
'
'     ---Summarize all records based upon the ZONE field
      Set pSTable = avSummarize(pmxDoc, sTblName, _
                                sumTblName, "dBase", "ZONE", _
                                fieldList1, sumryList2)
'
'     ---Check if the table summarized, if so add to map
      If (Not pSTable Is Nothing) Then
         iok = avAddDoc(pSTable)
      End If
   End If

C A L C U L A T E
QUERY a nd
SU M M A RIZE



5-52 Avenue Wraps

5.5.4 Subroutine avTableSort
This subroutine enables the programmer to sort an existing table, based upon
a field, in an ascending or descending order.  The sorting process creates a
new table, and does not alter the existing table.  In using this subroutine, note
the following:
1. If the table contains selected records, then only the selected records will

be sorted, otherwise, the entire table will be sorted.
2. A new dBase file is created containing the results of the sort, and it is

added to the document.  The default name of the new dBase file will be
of the form tblName_sort.dbf.

3. The optional argument, aFileName, can be used to explicitly define the
name of the new dBase file.  If aFileName does not contain a complete
pathname, the current working directory will be used.  Some examples of
aFileName include: c:\project\test\atable.dbf

atable.dbf
4. If the new dBase file that is to be created exists on disk, it will be deleted

prior to creating the new file.  Likewise, if the new table that will be added
to the document as a result of the sorting currently exists in the document,
it will be deleted prior to being added back in.

5. If the argument anOrder is true, the table is sorted in an ascending order,
and if it is false, the table is sorted in a descending order.  Note that this
is the reverse of the corresponding Avenue request.

The corresponding Avenue request is:
tblName.Sort (aField, anOrder)

The call to this Avenue Wrap is:
Call avTableSort(tblName, aField, anOrder, Optional aFileName)

GIVEN: tblName = name of table to be sorted.
aField = name of field that the sort is based upon.
anOrder = the sort order as a Boolean (see Note 5).
aFileName = optional argument denoting the name of the

new dBase file that will be created.

RETURN: nothing

The given and returned variables should be declared where first called as:
Dim tblName, aField As String
Dim anOrder As Boolean
Dim aFileName As String

C A L C U L A T E
QUERY a nd
SU M M A RIZE

a v T a b leSort



Chapter 5 Theme and Table Avenue Wraps 5-53

5.6 Shapefile and GeoDatabase Related Avenue Wraps

5.6.1 Function avOpenFeatClass
This function enables the programmer to open a dataset for editing purposes.
A dataset may be a shapefile, raster image, tin, coverage, access database or
CAD drawing.  The type of object returned is of IUknown type, however,
depending upon the type of dataset (opmode) to be processed, the actual
type of object returned will be:
1. for shapefiles, coverages, access database featureclass and CAD draw-

ing with a specified featureclass; IFeatureClass
2. for an access database dataset; IFeatureDataSet
3. for rasters; IRasterDataset
4. for tins; ITin
5. for CAD drawing with no specified featureclass; ICadDrawingDataset

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theObject = avOpenFeatClass(opmode, sDir, sName, _

aFCtype)

GIVEN: opmode = type of dataset to be opened.  Specify
1 : shapefile 2 : raster 3 : tin 4 : coverage
5 : access database feature class
6 : access database dataset
9: cad drawing

sDir = directory location of the dataset
sName = name of the dataset (do not include any

filename extension in the name)
aFCtype = feature class type (only used for coverages,

access databases and CAD) if not to be used
specify as NULL, for opmode = 5 this is the
name of the feature class to be opened for
opmode = 6 this is the name of a dataset to be
opened and sName is the name of the access
database, for opmode = 9 this is the name of the
feature class to be opened, valid values for this
mode include POINT, POLYLINE, POLYGON
and ANNOTATION.

a v Op enFea tC la ss

SH APEFIL E a nd
G EOD A T ABASE



5-54 Avenue Wraps

RETURN: theObject = dataset that has been opened.  If the specified
dataset cannot be found, or if found and it
cannot be opened, due to permission rights or
other reasons, then the keyword NOTHING is
returned.

The given and returned variables should be declared where first called as:
Dim opmode As Integer
Dim sDir As String, sName As String, aFCtype As String
Dim theObject As IUnknown

'
'  ---
'  ---Sample illustrating how to delete a dataset in a
'  ---personal geodatabase.
'  ---
'
   Dim sDir As String, dbName As String, sDSName As String
   Dim pFDataset As esriCore.IFeatureDataset
   Dim dsName As String
'
'  ---Define the directory where the geodatabase resides
   sDir = "c:\temp"
'
'  ---Define the name of the personal geodatabase
   dbName = "Profile27"
'
'  ---Define the name of the dataset to be deleted
   sDSName = "Sheet_1"
'
'  ---Check if the personal geodatabase exists
   If (avFileExists(sDir + "\"+ dbName + ".mdb")) Then
'
'     ---Try opening the dataset, if possible
      Set pFDataset = avOpenFeatClass(6, sDir, _

  dbName, sDSName)
'
'     ---Make sure the dataset exists
      If (Not pFDataset Is Nothing) Then
'
'        ---Combine the dataset and database names using
'        ---a single space to separate the two items, note
'        ---that the full pathname must be used to define
'        ---the database
         dsName = sDSName+" "+sDir+"\"+dbName+".mdb"
'
'        ---Delete the existing dataset
         Call avDeleteDS(dsName)
      End If
   End If

SH APEFIL E a nd
G EOD A T ABASE



Chapter 5 Theme and Table Avenue Wraps 5-55

5.6.2 Function  avOpenWorkspace
This function enables the programmer to open a workspace for processing.
A workspace may be a shapefile, raster image, tin, coverage or access
database.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theObject = avOpenWorkspace(opmode, sDir, sName)

GIVEN: opmode = type of workspace to be opened.  Specify
1 : shapefile 2 : raster 3 : tin
4 : coverage 5 : access database

sDir = directory location of the workspace
sName = name of the workspace (do not include any

filename extension in the name)

RETURN: theObject = workspace that has been opened.  If the speci-
fied workspace cannot be found, or if found
and it cannot be opened, due to permission
rights or other reasons, then the keyword
NOTHING is returned.

The given and returned variables should be declared where first called as:
Dim opmode As Integer
Dim sDir As String
Dim sName As String
Dim theObject As IWorkspace

5.6.3 Function  CreateAccessDB
This function enables the programmer to create a personal geodatabase by
specifying a directory location and the name of the .mdb file to be created.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theObject = CreateAccessDB(sDir, sName, bOverWrite)

SH APEFIL E a nd
G EOD A T ABASE

a v Op enW orksp a ce

C rea teAccessDB



5-56 Avenue Wraps

GIVEN: sDir = directory location of the workspace
sName = name of the workspace
bOverWrite = flag denoting whether the database should be

overwritten if it exists
(true = overwrite, false = do not overwrite)

RETURN: theObject = the workspace object representing the new
personal geodatabase

The given and returned variables should be declared where first called as:
Dim sDir As String, sName As String, bOverWrite As Boolean
Dim theObject As IWorkspace

5.6.4 Function  CreateAnnoClass
This function enables the programmer to create an annotation feature class
within a personal geodatabase (PGD).  Note that the name of the feature class
to be created (sName) should not contain the dash or hyphen (-) character
and that the first character in the name should be an alphacharacter, not a
number.  The annotation feature class is stored in a dataset within the PGD.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theObject = CreateAnnoClass(pWorkspace, sName, _

pFields, dRefScale, dUnits)

GIVEN: pWorkspace = workspace of the existing geodatabase
sName = annotation feature class name if the feature

class is to appear in a dataset of the same name,
otherwise, the annotation feature class name
and the name of the dataset are separated by
at least one space

pFields = attributes associated with the feature class
dRefScale = reference scale
dUnits = units of measure setting

RETURN: theObject = object representing the new annotation fea-
ture class in the existing geodatabase

SH APEFIL E a nd
G EOD A T ABASE

C rea teAnnoCla ss



Chapter 5 Theme and Table Avenue Wraps 5-57

The given and returned variables should be declared where first called as:
Dim pWorkspace As IWorkspace
Dim sName As String, pFields As IFields
Dim dRefScale As Double, dUnits As esriUnits
Dim theObject As IFeatureClass

5.6.5 Function CreateFeatClass
This function enables the programmer to create a feature class within a dataset
within a geodatabase.  In creating a feature class note the following:
1. The function CreateNewShapefile can be used to create the

IFeatureDataset object, if appropriate.
2. If pFields contains any geometry fields they will be ignored, only valid

attribute fields will be processed.
3. If pFields is not specified only the OID and SHAPE fields will be added

to the featureclass.
4. The name of the feature class to be created (sName) should not contain

the dash or hyphen (-) character and that the first character in the name
should be an alphacharacter, not a number.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theObject = CreateFeatClass(pFeatDataset, sName, _

geomType, pFields)

GIVEN: pFeatDataset = dataset within geodatabase to be processed
sName = name of the feature class to be created (do not

include any filename extension in the name)
geomType = feature class geometry type
pFields = feature class attributes

RETURN: theObject = object representing the new feature class in the
existing geodatabase

The given and returned variables should be declared where first called as:
Dim pFeatDataset As IFeatureDataset, sName As String
Dim geomType As esriGeometryType, pFields As IFields
Dim theObject As IFeatureClass

SH APEFIL E a nd
G EOD A T ABASE

C rea teFea tC la ss



5-58 Avenue Wraps

SH APEFIL E a nd
G EOD A T ABASE

5.6.6 Function CreateNewGeoDB
This function enables the programmer to create a personal geodatabase
(PGD) with an annotation feature class in one of two modes.  The first mode
employs a file dialog box, see Figure 5-1(A), where the user is able to enter
the name of the personal geodatabase.  The second mode creates the personal
geodatabase programmatically.  In using this function note the following:
Mode 1: File Dialog Box is displayed
 1. A stand-alone annotation feature class within a feature dataset is created

by this function, the names of the feature dataset and the annotation
feature class are the same (see note 2).

 2. Optionally, the user can enter up to 3 names in the Name data entry field,
with each name separated from each other by at least one space (blank
character). When 1 name is given see note 1. When 2 names are specified,
the first name defines the name of the dataset and feature class, while the
second name defines the name of the PGD to be created. When 3 names
are specified, the first defines the name of the feature class, the second
defines the name of the dataset and the third defines the name of the PGD
to be created.

 3. Use CreateNewShapefile, specifying the .mdb file name extension in the
default filename, to create a geodatabase that contains a feature class for
Point, Polyline and Polygon features.

4. The new annotation feature class is automatically added to the map once
it has been created.

Figure 5-1(A)
File File Dialog Box

when default filename contains the .shp extension



Chapter 5 Theme and Table Avenue Wraps 5-59

5. If an existing .mdb file is selected, the user can either abort the command
(CANCEL), add a new dataset to the .mdb file (NO) or overwrite the
existing file (YES), see Figure 5-1(B).

6. When an ex-
isting .mdb
file is ap-
pended the
root name of
the default
filename is
used as the
name of the new annotation feature class.

7. When an existing .mdb file is to be overwritten, if the file exists in the map
the function will not delete the file but will inform the user and abort the
function.

8. The Map Units for the data frame must be set to something other than
Unknown Units, otherwise the MapScale property will result in an
automation error message.

9. The default name of the personal geodatabase that is specified (defName)
will appear in the file dialog box.

Mode 2: File Dialog Box not displayed (programmatically create the PGD)
10. When aTitle = "CREATEandLOAD" this denotes that the default

filename (defName) is to be created and loaded without displaying the
file dialog box.  In this mode of operation, defName can contain up to three
items with each item separated from each other by a space:
 >>>Single Item condition<<<
Under this condition, the programmer specifies the name of the personal
geodatabase to be created and loaded. A full pathname for the personal
geodatabase must be given. If the personal geodatabase exists, it will not
be deleted but rather, it will be used as is. The programmer has to make
sure that the personal geodatabase does not already exist in the map,
otherwise, multiple copies of the personal geodatabase will appear in the
TOC because the existing  personal geodatabase will be loaded into the
map.  An example of defName to create a geodatabase that will be named
L_0.mdb and will contain a feature dataset and an annotation feature
class named L_0 is:

defName = "c:\temp\L_0.mdb"
>>>Two Item condition<<<
Under this condition, the programmer specifies the name of a feature

SH APEFIL E a nd
G EOD A T ABASE

Figure 5-1(B)
Okay to Overwrite (Yes) or Append (No)

an Existing Personal GeoDatabase Query



5-60 Avenue Wraps

SH APEFIL E a nd
G EOD A T ABASE

dataset to be created and a personal geodatabase in which the feature
dataset is to be stored in. The personal geodatabase can either exist or
not, if it does not it will be created. If the personal geodatabase exists,
the feature dataset will be added to the personal geodatabase. If the
feature dataset exists in the personal geodatabase, it will not be deleted
but rather, it will be used as is. The programmer has to make sure the
feature dataset does not already exist in the map, otherwise, multiple
copies of the feature dataset will appear in the TOC because the existing
feature dataset will be loaded into the map.  An example of defName to
create a geodatabase that will be named L_0.mdb and will contain a
feature dataset and an annotation feature class named G_Grid is:

defName = "G_Grid c:\temp\L_0.mdb"
>>>Three Item condition<<<
Similar to the two item condition, described above, with the exception
that the user can control the name of the dataset that is created.  An
example of defName to create a geodatabase that will be named L_0.mdb
and will contain a feature dataset called Profile and an annotation feature
class named G_Grid is:

defName = "G_Grid Profile c:\temp\L_0.mdb"

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theObject = CreateNewGeoDB(pFieldsI, geomType, _

defName, aTitle)

GIVEN: pFieldsI = attributes to be stored in the new geodatabase
geomType = feature class geometry type (as of this imple-

mentation not used, so that, the keyword
NOTHING can be entered)

defName = default filename (see notes above)
aTitle = file dialog message box title, if aTitle is equal to

CREATEandLOAD no file dialog box will be
shown, the shapefile or PGD will be created
without user intervention, programmatically.

RETURN: theRect = object representing the new annotation fea-
ture class in the existing geodatabase

C rea teN ew G eoDB



Chapter 5 Theme and Table Avenue Wraps 5-61

The given and returned variables should be declared where first called as:
Dim pFieldsI As esriCore.IFields
Dim geomType As esriCore.esriGeometryType
Dim defName As String, aTitle As String
Dim theObject As esriCore.IFeatureClass

5.6.7 Function CreateNewShapeFile
This function enables the programmer to create (a) a shapefile or (b) a personal
geodatabase (PGD) in one of two modes.  The first mode employs a file dialog
box, see Figure 5-1(A), where the user is able to enter the name of the shapefile
or personal geodatabase.  The second mode creates theshapefile or personal
geodatabase programmatically.  In using this function note the following:
Mode 1: File Dialog Box is displayed
1. If the pFieldsI argument is set to NOTHING, a default shape field with

a default spatial reference will be assigned, and one attribute called ID
will be added to the shapefile or personal geodatabase.

2. If the defName argument contains the .shp filename extension, the
dataset type that will be created will be a shapefile. If the .mdb filename
extension is found, the type of dataset created will be a personal
geodatabase. If no filename extension is given both types will appear in
the list of available types and the user can pick the desired type, see
Figure 5-1(C).

SH APEFIL E a nd
G EOD A T ABASE

Figure 5-1(C)
CreateNewShapeFile File Dialog Box

when default filename contains no extension



5-62 Avenue Wraps

SH APEFIL E a nd
G EOD A T ABASE

3. The new shapefile or geodatabase is automatically added to the map
once it has been created.

4. When a personal geodatabase is created a feature dataset and a feature
class are created using the same name, the feature class is added to the
feature dataset (see note 5).

5. Optionally, the user can enter up to 3 names in the Name data entry field,
with each name separated from each other by at least one space (blank
character). When 1 name is given see note 4. When 2 names are specified,
the first name defines the name of the dataset and feature class, while the
second name defines the name of the PGD to be created. When 3 names
are specified, the first defines the name of the feature class, the second
defines the name of the dataset and the third defines the name of the PGD
to be created.

6. If an existing .mdb file is selected, the user can either abort the command
(CANCEL), add a new dataset to the .mdb file (NO) or overwrite the
existing file (YES), see Figure 5-1(B).

7. When an existing .mdb file is appended the root name of the default
filename is used as the name of the new feature class that is created.

8. When an existing .mdb file is to be overwritten, if the file exists in the map
the function will not delete the file but will inform the user and abort the
function.

9. The default name
of the shapefile
that is specified
(defName) will ap-
pear in the file dia-
log box.

10. If an existing .shp file is selected, the user can either abort the command
(NO), or overwrite the existing file (YES), see Figure 5-1(D).

11. The geometry type (geomType) should be specified as:
• esriGeometryPoint,
• esriGeometryPolyline, or
• esriGeometryPolygon.
Use CreateNewGeoDB when dealing with annotation features.  This
function should be used when Point, Polyline or Polygon features are to
be stored in the shapefile or personal geodatabase.

Mode 2: File Dialog Box not displayed (programmatically create the PGD)
12. When aTitle = "CREATEandLOAD" this denotes that the default

filename (defName) is to be created and loaded without displaying the

Figure 5-1(D)
Overwrite Existing Shapefile Query



Chapter 5 Theme and Table Avenue Wraps 5-63

file dialog box.  In this mode of operation, defName can contain up to three
items with each item separated from each other by a space:
 >>>Single Item condition<<<
Under this condition, the programmer specifies the name of the shapefile
or personal geodatabase to be created and loaded. A full pathname for
the shapefile or personal geodatabase must be given.  If the shapefile or
personal geodatabase exists, it will not be deleted but rather, it will be
used as is. The programmer has to make sure that the shapefile or
personal geodatabase does not already exist in the map, otherwise,
multiple copies of the shapefile or personal geodatabase will appear in
the TOC because the existing shapefile or personal geodatabase will be
loaded into the map.  An example of defName to create a shapefile that
will be named L_0.shp is:

defName = "c:\temp\L_0.shp"
An example of defName to create a geodatabase that will be named
L_0.mdb and will contain a feature dataset and feature class both named
L_0 is:

defName = "c:\temp\L_0.mdb"
>>>Two Item condition<<<
Under this condition, the programmer specifies the name of a feature
dataset to be created and a personal geodatabase in which the feature
dataset is to be stored in. The personal geodatabase can either exist or
not, if it does not it will be created. If the personal geodatabase exists,
the feature dataset will be added to the personal geodatabase. If the
feature dataset exists in the personal geodatabase, it will not be deleted
but rather, it will be used as is. The programmer has to make sure the
feature dataset does not already exist in the map, otherwise, multiple
copies of the feature dataset will appear in the TOC because the existing
feature dataset will be loaded into the map.  An example of defName to
create a geodatabase that will be named L_0.mdb and will contain a
feature dataset and feature class named G_Grid is:

defName = "G_Grid c:\temp\L_0.mdb"
>>>Three Item condition<<<
Similar to the two item condition described above with the exception that
the user can control the name of the dataset that is created.  An example
of defName to create a geodatabase that will be named L_0.mdb and will
contain a feature dataset called Profile and a feature class named G_Grid
is:

defName = "G_Grid Profile c:\temp\L_0.mdb"

SH APEFIL E a nd
G EOD A T ABASE



5-64 Avenue Wraps

SH APEFIL E a nd
G EOD A T ABASE

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set NewShapeFile = CreateNewShapeFile(pFieldsI,  _

geomType, defName, aTitle)

GIVEN: pFieldsI = attributes to be stored in the new shapefile
geomType = shapefile geometry type
defName = default filename
aTitle = file dialog message box title

RETURN: NewShapeFile = feature class that is created

The given and returned variables should be declared where first called as:
Dim pFieldsI As esriCore.IFields
Dim geomType As esriCore.esriGeometryType
Dim defName As String
Dim aTitle As String
Dim NewShapeFile As esriCore.IFeatureClass

5.6.8 Function CreateShapeFile
This function enables the programmer to create a new shapefile using
information explicitly defined in the calling arguments (no user interaction).
In using this function, note the following:
1. The name of the shapefile to be created (strName) can or can not contain

the .shp extension.  If it does, it will be stripped off.
2. The geometry type (geomType) should be specified as:

• esriGeometryPoint,
• esriGeometryPolyline, or
• esriGeometryPolygon.

3. The pFields argument is optional (can be omitted from the argument list).
If it is not specified, a default shape field with a default spatial reference
will be assigned, and one attribute called ID will be added to the shapefile.

4. The pCLSID argument is optional (can be omitted from the argument list).
If it is specified, the pFields argument must also be specified.

The corresponding Avenue request is:
There is no corresponding Avenue request.

Crea teN ewSha p eFile



Chapter 5 Theme and Table Avenue Wraps 5-65

The call to this Avenue Wrap is:
Set NewShapeFile = CreateShapeFile(featWorkspace,  _

strName, geomType, pFields, pCLSID)

GIVEN: featWorkspace = directory location
strName = shapefile name
geomType = shapefile geometry type
pFields = shapefile attributes
pCLSID = geometry type subclass

RETURN: NewShapeFile = feature class that is created

The given and returned variables should be declared where first called as:
Dim featWorkspace As esriCore.IFeatureWorkspace
Dim strName As String
Dim geomType As esriCore.esriGeometryType
Dim pfields As esriCore.IFields
Dim pCLSID As esriCore.UID
Dim NewShapefile As esriCore.IFeatureClass

'
'  ---
'  ---Sample illustrating how to create a new shapefile that
'  ---has a default spatial reference and three attributes
'  ---using a name that the user enters in a file dialog box.
'  ---The shapefile is to contain Polyline features and will
'  ---be added to the map once it has been created.
'  ---
'
   Dim pMxApp As esriCore.IMxApplication
   Dim pmxDoc As esriCore.IMxDocument
   Dim pActiveView As esriCore.IActiveView
   Dim pMap As esriCore.IMap
   Dim aDefName As String
   Dim pFieldsEdit As esriCore.IFieldsEdit
   Dim pFieldEdit As esriCore.IFieldEdit
   Dim pSR As esriCore.ISpatialReference
   Dim pGeomDef As esriCore.IGeometryDef
   Dim pGeomDefEdit As esriCore.IGeometryDefEdit
   Dim aMessage As String
   Dim pNShapeFile As esriCore.IFeatureClass
   Dim aMsg, aTitle2 As String
   Dim theTheme As Variant
   Dim theFTab As esriCore.IFields
   Dim pFeatureClass As esriCore.IFeatureClass
   Dim aLayer As esriCore.IFeatureLayer
   Dim shpFldName As String
   Dim shpType As esricore.esriGeometryType
'

C rea teSha p eFile

SH APEFIL E a nd
G EOD A T ABASE



5-66 Avenue Wraps

'  ---Get the active view
   Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
'  ---Define the default shapefile name (since there is no
'  ---extension specified in the name, the Save as type: drop
'  ---down list will contain both Shapefile and Personal
'  ---Geodatabases)
   aDefName = "L_poly"
'
'  ---Check if the shapefile is in the map, we can not
'  ---create a shapefile if it exists in the map
   If (avFindDoc(aDefName) <> -1) Then
'     ---Remove the shapefile from the map, does not
'     ---delete it from the hard drive (disk)
      Call avRemoveDoc(aDefName)
   End If
'
'  ---Create the required shapefile attributes
'
'  ---Define the object ID field
   Set pFieldsEdit = New esriCore.Fields
   Set pFieldEdit = New esriCore.Field
   With pFieldEdit
       .name = "OID"
       .Type = esriCore.esriFieldTypeOID
       .aliasName = "Object ID"
      .IsNullable = False
   End With
   pFieldsEdit.AddField pFieldEdit
'
'  ---Assign the default spatial reference
   Set pSR = New esriCore.UnknownCoordinateSystem
   pSR.SetDomain -9999999999#, 9999999999#, _
                 -9999999999#, 9999999999#
   pSR.SetFalseOriginAndUnits 0, 0, 100000#
'
'  ---Define geometry type for shape field to be Polyline
   Set pGeomDef = New esriCore.GeometryDef
   Set pGeomDefEdit = pGeomDef
   With pGeomDefEdit
       .GeometryType = esriCore.esriGeometryPolyline
       .GridCount = 1
       .GridSize(0) = 10
       .AvgNumPoints = 2
       .HasM = False
       .HasZ = False
       Set .SpatialReference = pSR
   End With
'
'  ---Define the Shape Field
   Set pFieldEdit = New esriCore.Field
   With pFieldEdit
       .name = "Shape"

SH APEFIL E a nd
G EOD A T ABASE



Chapter 5 Theme and Table Avenue Wraps 5-67

       .Type = esriCore.esriFieldTypeGeometry
       .IsNullable = True
       .Editable = True
       .aliasName = "Shape"
       Set .GeometryDef = pGeomDef
   End With
   pFieldsEdit.AddField pFieldEdit
'
'  ---Add the desired attributes into the attribute list
'  ---In this example we will add an integer attribute, a
'  ---double attribute and a string attribute using arbitrary
'  ---field names and sizes
'
'  ---Map Number
   Set pFieldEdit = New esriCore.Field
   pFieldEdit.name = "MAP"
   pFieldEdit.Type = esriCore.esriFieldTypeInteger
   pFieldEdit.DomainFixed = False
   pFieldEdit.Editable = True
   pFieldEdit.IsNullable = False
   pFieldEdit.Precision = 8
   pFieldsEdit.AddField pFieldEdit
'
'  ---Line Length
   Set pFieldEdit = New esriCore.Field
   With pFieldEdit
       .name = "LEN"
       .Editable = True
       .IsNullable = False
       .Precision = 14
       .Scale = 4
       .Type = esriCore.esriFieldTypeDouble
   End With
   pFieldsEdit.AddField pFieldEdit
'
'  ---Description associated with the polyline
   Set pFieldEdit = New esriCore.Field
   pFieldEdit.name = "LINE_DESC"
   pFieldEdit.Type = esriCore.esriFieldTypeString
   pFieldEdit.Editable = True
   pFieldEdit.IsNullable = False
   pFieldEdit.Precision = 40
   pFieldsEdit.AddField pFieldEdit
'
'  ---Define the file dialog message box title
   aMessage = "Enter the name of the Shapefile " + _
              "to contain Lines"
'
'  ---Prompt the user to specify the shapefile name
   Set pNShapeFile = CreateNewShapefile(pFieldsEdit, _
                            esriCore.esriGeometryPolyline, _
                            aDefName, aMessage)
'

SH APEFIL E a nd
G EOD A T ABASE



5-68 Avenue Wraps

SH APEFIL E a nd
G EOD A T ABASE

'  ---Check if the command has been canceled (aborted)
   If (ugerror = 1) Then
      Exit Sub
   End If
'
'  ---Check if any problems were detected
   If pNShapeFile Is Nothing Then
'
'     ---Inform user of the problem
      aMsg = "Error creating Shapefile, check permissions."
      aTitle2 = "Create Shapefile"
      Call avMsgBoxWarning(aMsg, aTitle2)
      Exit Sub
'
'  ---Shapefile created properly
   Else
'
'     ---Get the name of the shapefile
      theTheme = pNShapeFile.aliasName
   End If
'
'  ---Get the attribute table for the theme
   Call avGetFTab(pmxDoc, theTheme, _
                  theFTab, pFeatureClass, aLayer)
'
'  ---Determine the name of the shape field for the theme
   shpFldName = pFeatureClass.ShapeFieldName
'
'  ---Determine the type of features stored in the theme
   shpType = pFeatureClass.ShapeType



Chapter 5 Theme and Table Avenue Wraps 5-69

L IN K IN G  a nd
COM BIN IN G

T ABL ES

5.7 Linking and Joining Tables

5.7.1 Function avIsJoined
This function enables the programmer to determine whether a field has been
added to a VTab as a result of a Join.

The corresponding Avenue request is:
theAnsw = aVTab.IsJoinedField (aField)

The call to this Avenue Wrap is:
theAnsw = avIsJoined(aVTab)

GIVEN: aVTab = name of VTab to be processed.

RETURN: theAnsw = flag denoting whether the input object has
links or not.
true = has links, false = not linked

The given and returned variables should be declared where first called as:
Dim aVTab As String
Dim theAnsw As Boolean

5.7.2 Function avIsLinked
This function enables the programmer to determine whether a VTab has links
(relates to other tables) or not.

The corresponding Avenue request is:
theAnsw = aVTab.IsLinked

The call to this Avenue Wrap is:
theAnsw = avIsLinked(aVTab)

GIVEN: aVTab = name of VTab to be processed.

RETURN: theAnsw = flag denoting whether the input object has
links or not.
true = has links, false = not linked

The given and returned variables should be declared where first called as:
Dim aVTab As String
Dim theAnsw As Boolean

a v IsJoined

a v IsL inked



5-70 Avenue Wraps

5.7.3 Function avJoin
This function enables the programmer to join aVTab2 to aVTab1 using user
specified field names.  In using this function, note that whereas the Avenue
request returns a boolean (theAnsw), the Avenue Wrap returns an integer.
See below the associated values under the returned argument theAnsw.

The corresponding Avenue request is:
theAnsw = aVTab1.Join(aField1, aVTab2, aField2)

The call to this Avenue Wrap is:
theAnsw = avJoin(aVTab1, aField1, aVTab2, aField2)

GIVEN: aVTab1 = the name of the VTab to which aVTab2 is to be
joined.

aField1 = the field in aVTab1 upon which the join is
based.

aVTab2 = the name of VTab to be joined to aVTab1.
aField2 = the field in aVTab2 upon which the join is

based.

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab1 does not exist
• 3 : aVTab2 does not exist

The given and returned variables should be declared where first called as:
Dim aVTab1 As String, aField1 As String
Dim aVTab2 As String, aField2 As String
Dim avJoin As Integer

5.7.4 Function avLink
This function enables the programmer to link (relate)aVTab2 to aVTab1 using
user specified field names.  In using this function, note that whereas the
Avenue request returns a boolean (theAnsw), the Avenue Wrap returns an
integer.  See below the associated values under the returned argument
theAnsw.

L IN K IN G  a nd
COM BIN IN G
T ABL ES

a v Join



Chapter 5 Theme and Table Avenue Wraps 5-71

L IN K IN G  a nd
COM BIN IN G

T ABL ES

The corresponding Avenue request is:
theAnsw = aVTab1.Link(aField1, aVTab2, aField2)

The call to this Avenue Wrap is:
theAnsw = avLink(aVTab1, aField1, aVTab2, aField2)

GIVEN: aVTab1 = the name of the VTab to which aVTab2 is to be
linked.

aField1 = the field in aVTab1 upon which the join is
based.

aVTab2 = the name of VTab to be linked to aVTab1.
aField2 = the field in aVTab2 upon which the link is

based.

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab1 does not exist
• 3 : aVTab2 does not exist

The given and returned variables should be declared where first called as:
Dim aVTab1 As String, aField1 As String
Dim aVTab2 As String, aField2 As String
Dim theAnsw As Integer

5.7.5 Function avUnJoinAll
This function enables the programmer to remove all joins from a VTab.  In
using this function, note that the Avenue Wrap returns an integer.  See below
the associated values under the returned argument theAnsw.

The corresponding Avenue request is:
aVTab.UnjoinAll

The call to this Avenue Wrap is:
theAnsw = avUnJoinAll(aVTab)

GIVEN: aVTab = the name of the VTab from which all joins are
to be removed.

a v L ink

a v U nJoinAll



5-72 Avenue Wraps

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab does not exist

The given and returned variables should be declared where first called as:
Dim aVTab As String
Dim theAnsw As Integer

5.7.6 Function avUnLinkAll
This function enables the programmer to remove all links (relates) from a
VTab.  In using this function, note that the Avenue Wrap returns an integer.
See below the associated values under the returned argument theAnsw.

The corresponding Avenue request is:
aVTab.UnlinkAll

The call to this Avenue Wrap is:
theAnsw = avUnLinkAll(aVTab)

GIVEN: aVTab = the name of the VTab from which all links are
to be removed.

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab does not exist

The given and returned variables should be declared where first called as:
Dim aVTab As String
Dim theAnsw As Integer

a v U nL inkA ll

L IN K IN G  a nd
COM BIN IN G
T ABL ES



Chapter 5 Theme and Table Avenue Wraps 5-73

5.7.7 Function avUpdateJoin
This function enables the programmer to update the selection set of aVTab2
to reflect the selection set of aVTab1 based upon a join (relate).  Furthermore,
this procedure will refresh the selection set for the VTab being processed,
aVTab1 in addition to the selection set of aVTab2.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
theAnsw = avUpdateJoin(aVTab1, aVTab2)

GIVEN: aVTab1 = the name of the VTab to which aVTab2 is
joined.

VTab2 = the name of the VTab joined to aVTab1

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab1 does not exist
• 2 : aVTab2 does not exist
• 4 : join was not found

The given and returned variables should be declared where first called as:
Dim aVTab1, aVTab2 As String
Dim aLink As Long
Dim theAnsw As Integer

5.7.8 Function avUpdateLink
This function enables the programmer to update the selection set in aVTab2
to reflect the selection set of aVTab1 based upon a specified link (relate).  If
aVTab2 is a layer and if aLinkI is negative the selection set of aVTab2 is
updated but the display of the selected features is not. This is useful when
performing loops where it is not necessary to have the screen redrawn after
each iteration within the loop.  Since refreshing the screen is slow the use of
this function with a negative link ID value can be very useful.  In using this
function, note that the Avenue Wrap returns an integer.  See below the
associated values under the returned argument theAnsw.

a v U p d a teJoin

L IN K IN G  a nd
COM BIN IN G

T ABL ES



5-74 Avenue Wraps

L IN K IN G  a nd
COM BIN IN G
T ABL ES

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
theAnsw = avUpdateLink(aVTab1, aVTab2, aLink)

GIVEN: aVTab1 = the name of the VTab to which aVTab2 is
linked.

VTab2 = the name of the VTab linked to aVTab1
aLinkI = link number in aVTab1 to be updated (if aVTab2

is a layer and if aLinkI is negative the selection
set of aVTab2 is updated but the display of the
selected features is not)

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab1 does not exist
• 2 : aVTab2 does not exist
• 4 : link number was not found

The given and returned variables should be declared where first called as:
Dim aVTab1, aVTab2 As String
Dim aLinkI As Long
Dim theAnsw As Integer

5.7.9 Function avUpdateLinks
This function enables the programmer to update the selection sets in all
VTabs that are linked (related) to aVTab1.  Furthermore, this function will
refresh the selection set for the VTab being processed, aVTab1 in addition
to all of the selection sets that aVTab1 has links (relates) with.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
theAnsw = avUpdateLinks(aVTab1)a v U p d a teL inks

a v U p d a teL ink



Chapter 5 Theme and Table Avenue Wraps 5-75

L IN K IN G  a nd
COM BIN IN G

T ABL ES

GIVEN: aVTab1 = the name of the VTab to be processed

RETURN: theAnsw = error flag, where the values below denote the
indicated results of the function.
• 0 : no error
• 1 : error detected
• 2 : aVTab1 does not exist
• 3 : no links were found

The given and returned variables should be declared where first called as:
Dim aVTab1 As String
Dim theAnsw As Integer

'
'  ---
'  ---Sample illustrating how to join a table to a layer and
'  ---transfer a value from the table, as a result of the
'  ---join, to a specific feature in the layer
'  ---
'
   Dim pMxApp As esriCore.IMxApplication
   Dim pmxdoc As esriCore.IMxDocument
   Dim pActiveView As esriCore.IActiveView
   Dim pMap As esriCore.IMap
   Dim aVTab1 As String, aField1 As String
   Dim aVTab2 As String, aField2 As String
   Dim iok As Integer
   Dim theFTab As esriCore.IFields
   Dim pFCls As esriCore.IFeatureClass
   Dim pFLyr As esriCore.IFeatureLayer
   Dim pTable As esriCore.iTable
   Dim colL As Long, colT As Long
   Dim oidList As New Collection
   Dim iRec As Long
   Dim pFeat As esricore.iFeature
   Dim pFeatRow As esricore.iRow
   Dim aVal As Variant
'
'  ---Get the active view
   Call avGetActiveDoc(pMxApp, pmxdoc, pActiveView, pMap)
'
'  ---Define the layer that will have a join and the field
'  ---that the join will be based upon
   aVTab1 = "sewnodes"
   aField1 = "NODID"
'
'  ---Define the table to be joined to the layer and the field
'  ---that the join will be based upon
   aVTab2 = "sewhydro"
   aField2 = "NODID"



5-76 Avenue Wraps

L IN K IN G  a nd
COM BIN IN G
T ABL ES

'
'  ---Join the table to the layer
   iok = avJoin(aVTab1, aField1, aVTab2, aField2)
'
'  ---Get the attribute table for the layer, note that the
'  ---attributes in theFTab contain only the attributes in
'  ---the layer not the layer and the table
   Call avGetFTab(pmxdoc, aVTab1, theFTab, pFCls, pFLyr)
'
'  ---In order to access the fields in the table which were
'  ---joined to the layer the ITable interface must be
'  ---used, otherwise only the attributes in the layer will
'  ---be found (theFTab now contains both sets of fields)
   Set pTable = pFLyr
   Set theFTab = pTable.Fields
'
'  ---Define a field in the layer attribute table after the
'  ---join was applied (note that the name of the layer must
'  ---precede the name of the field)
   colL = theFTab.FindField("sewnodes.GRELVZ")
'
'  ---Define the field in the table which should now appear
'  ---in the attribute table as a result of the join
   colT = theFTab.FindField("sewhydro.ELEV")
'
'  ---Make the theme editable
   Call avSetEditable(pmxdoc, aVTab1, True)
'
'  ---Start an operation
   Call avStartOperation
'
'  ---Get a list of the OIDs in the layer
   Call avGetFTabIDs(pmxdoc,aVTab1, oidList)
'
'  ---Define the record to be processed
   iRec = oidList.Item(1)
'
'  ---Get the feature in the layer to be modified
   Set pFeat = pFCls.GetFeature(iRec)
'
'  ---Get the IRow for the feature (record) since it contains the
'  ---results of the join
   Set pFeatRow = pTable.GetRow(iRec)
'
'  ---Get the value from the table that has been joined to the layer
   aVal = pFeatRow.Value(colT)
'
'  ---Transfer the table value to the feature (note that the pFeat
'  ---object, not the pFeatRow object, is used)
   pFeat.Value(colL) = aVal
'
'  ---Store the feature
   pFeat.Store



Chapter 5 Theme and Table Avenue Wraps 5-77

L IN K IN G  a nd
COM BIN IN G

T ABL ES

'
'  ---Stop the operation
   Call avStopOperation("Modify Feature")
'
'  ---Remove the join from the layer
   iok = avUnJoinAll(aVTab1)
'
'  ---
'  ---Sample illustrating how to link a table to a layer.
'  ---
'
   Dim pMxApp As esriCore.IMxApplication
   Dim pmxdoc As esriCore.IMxDocument
   Dim pActiveView As esriCore.IActiveView
   Dim pMap As esriCore.IMap
   Dim aVTab1 As String, aField1 As String
   Dim aVTab2 As String, aField2 As String
   Dim iok As Integer
   Dim sel As esriCore.ISelectionSet
   Dim aQuery As String
   Dim selTable As esriCore.ISelectionSet
'
'  ---Get the active view
   Call avGetActiveDoc(pMxApp, pmxdoc, pActiveView, pMap)
'
'  ---Define the layer that will have a link assigned to it and
'  ---the field that the link will be based upon
   aVTab1 = "sewnodes"
   aField1 = "NODID"
'
'  ---Define the table to be linked to the layer and the field
'  ---that the link will be based upon
   aVTab2 = "sewhydro"
   aField2 = "NODID"
'
'  ---Link the table to the layer
   iok = avLink(aVTab1, aField1, aVTab2, aField2)
'
'  ---Check if the link has been applied to the layer
   If (avIsLinked(aVTab1)) Then
      MsgBox "Link has been applied to: " + aVTab1
   End If
'
'  ---Get the current selection set for the layer
   Call avGetSelection(pmxdoc, aVTab1, sel)
'
'  ---Appy a query to the layer
   aQuery = "NODID = 82309"
   Call avQuery(pmxdoc, aVTab1, aQuery, sel, "NEW")



5-78 Avenue Wraps

L IN K IN G  a nd
COM BIN IN G
T ABL ES

'
'  ---Get the selection set for the layer which contains
'  ---the results of the query
   Call avGetSelection(pmxdoc, aVTab1, sel)
'
'  ---Update the selection set for the layer
   Call avUpdateSelection(pmxdoc, aVTab1)
'
'  ---Make sure the display is current
   pActiveView.Refresh
'
'  ---In order to have the linked table reflect the selection
'  ---in the layer we must update the link, if this is not
'  ---done the table selection will not reflect the link. Since
'  ---the layer has only one link assigned to it the link
'  ---number is one (1)
   Call avUpdateLink(aVTab1, aVTab2, 1)
'
'  ---Get the selection set for the table
   Call avGetSelection(pmxdoc, aVTab2, selTable)
'
'  ---Display the number of selected features in the layer
'  ---and the table
   MsgBox "Selected features = " + CStr(sel.Count) + Chr(13) + _
          "Selected records  = " + CStr(selTable.Count)
'
'  ---Remove the link from the layer
   iok = avUnLinkAll(aVTab1)



Chapter 5 Theme and Table Avenue Wraps 5-79

5.8 Sample Code

The sample code below contains two examples, (a) one that illustrates how to create
a shapefile, in this example a polyline, and add a feature to it, and (b) another that
illustrates how to create a table and perform various editing operations.  In the course
of these samples, certain other operations are demonstrated, some of which are used
strictly for illustration purposes.  Note that the various Avenue Wraps that are called
below have been highlighted in bold font.  Some of these Avenue Wraps are discussed
in detail in other chapters.

'
'  ---
'  ---Example #1
'  ---Sample code illustrating how to create a Shapefile, and
'  ---add a feature to it.
'  ---
'
   Dim pMxApp As IMxApplication
   Dim pmxDoc As IMxDocument
   Dim pActiveView As IActiveView
   Dim pMap As IMap
   Dim sThmName, sPthName As String
   Dim PTheme As IFeatureLayer
   Dim aIndex As Long
   Dim iok As Integer
   Dim iRec As Long
   Dim theFTab As IFields
   Dim pFeatCls As IFeatureClass
   Dim pLayer As IFeatureLayer
   Dim pLineX As IPolyline
   Dim aField As Long
   Dim pFeature As esriCore.IFeature
   Dim shapeList As New Collection
   Dim nParts As Long
   Dim partList As New Collection
   Dim nPts As Long
   Dim pt1 As esriCore.IPoint
   Dim pt2 As esriCore.IPoint
   Dim X1 As Double, Y1 As Double
   Dim X2 As Double, Y2 As Double
   Dim aMsg As Variant
   Dim sTblName, sTblPthName As String
   Dim pTable As ITable
   Dim pFld1 As IFieldEdit
   Dim pFld2 As IFieldEdit
   Dim pFld3 As IFieldEdit
   Dim fldList As New Collection
   Dim theVTab As IFields
   Dim col As Long
   Dim nDigits As Long

SAM PL E CODE



5-80 Avenue Wraps

SAM PL E CODE    Dim pField As IField
   Dim aType As esriFieldType
   Dim idList As New Collection
   Dim aTotal As Double
   Dim jRec As Long
   Dim rec As Long
   Dim pRow As IRow
   Dim aVal As Double
   Dim nRec As Long
   Dim sel As ISelectionSet
   Dim aCalcString, aQueryString As String
   Dim sumTblName As String
   Dim fieldList1 As New Collection
   Dim sumryList2 As New Collection
   Dim pSTable As ITable
'
'  ---Get the active view                                   <<<------
   Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
'
'  ---Define the name of the shapefile to be created
   sThmName = "L_poly.shp"
'
'  ---Define the full pathname of the shapefile
   sPthName = "c:\temp\" + sThmName
'
'  ---Create a polyline shapefile
   Set PTheme = avFTabMakeNew(sPthName, "POLYLINE")
'
'  ---Make sure the shapefile was actually created.
'  ---It is possible that, due to certain restrictions that may have
'  ---been imposed on the operating system by its administrator,
'  ---the shapefile may not have been created. In addition, if
'  ---the shapefile exists, it will not be created.
   If (PTheme Is Nothing) Then
      MsgBox "Error in creating shapefile: " + sThmName
'
'     ---Check if the shapefile exists
      If (avFileExists(sPthName)) Then
         MsgBox "Shapefile: " + sPthName + " exists"
'        ---Check if the shapefile exists in the map
         aIndex = avFindDoc(sThmName)
         If (aIndex <> -1) Then
'           ---Remove the shapefile from the map
            Call avRemoveDoc(sThmName)
            MsgBox "Shapefile: " + sThmName + " removed from TOC"
         End If
'        ---Delete the shapefile from disk
         iok = avDeleteDS(sPthName)
         If (iok = 0) Then
            MsgBox "Shapefile: " + sPthName + " deleted " + CStr(iok)
         Else
            MsgBox "Error deleting shapefile"
         End If



Chapter 5 Theme and Table Avenue Wraps 5-81

      Else
         MsgBox "Shapefile: " + sThmName + " does not exist" + _
                Chr(13) + "and could not create the shapefile"
      End If
'
'  ---Handle the case when the shapefile was created
   Else
      MsgBox "Shapefile: " + sThmName + " created"
'
'     ---Add the shapefile to the map
      iok = avAddDoc(PTheme)
      MsgBox "Shapefile: " + sThmName + " added to TOC"
'
'     ---Make the shapefile editable
      Call avSetEditable(pmxDoc, sThmName, True)
'
'     ---Start an operation that will be added to the Undo list
      Call avStartOperation
'
'     ---Add a record to the shapefile, this is a new feature that
'     ---has been added
      iRec = avAddRecord(pmxDoc, sThmName)
'
'     ---Get the attribute table
      Call avGetFTab(pmxDoc, sThmName, theFTab, pFeatCls, pLayer)
'
'     ---Create a line that will represent the geometry of a new
'     ---feature in the shapefile
      Set pLineX = avPolyline2Pt(20000#, 20000#, 30000#, 25000#)
'
'     ---Store the geometry for the new feature in the shape field
'     ---of the layer
      aField = theFTab.FindField("SHAPE")
      Call avSetValueG(pmxDoc, sThmName, aField, iRec, pLineX)
'
'     ---Redraw the theme to refresh the display
      Call avThemeInvalidate(pmxDoc, sThmName, True)
'
'     ---Stop the editing operation so that the operation consists
'     ---only of adding a single feature.
'     ---Note that the editor will remain in an edit state so that
'     ---the Undo capabilities can be utilized, if so desired
      Call avStopOperation("Add Feature")
      MsgBox "Feature added to map"
'
'     ---Display the coordinates of the endpoints of the line
'     ---First get the feature, since there is only one feature in
'     ---the shapefile we know it is at record zero
      Call avGetFeature(pmxDoc, sThmName, 0, pFeature)

SAM PL E CODE



5-82 Avenue Wraps

SAM PL E CODE '
'     ---Get a list of list of points which comprise the feature
      Call avAsList(pFeature, shapeList)
'
'     ---Determine the number of parts comprising the feature
      nParts = shapeList.Count
'
'     ---Get the first part comprising the feature
      Set partList = shapeList.Item(1)
'
'     ---Determine the number of points in the part
      nPts = partList.Count
'
'     ---Get the first and last points in the part
      Set pt1 = partList.Item(1)
      Set pt2 = partList.Item(2)
'
'     ---Get the X and Y coordinates for each point
      X1 = pt1.x
      Y1 = pt1.y
      X2 = pt2.x
      Y2 = pt2.y
'
'     ---Display the coordinates to three digits to the right of
'     ---the decimal point
      aMsg = "X1 = " + Dformat(X1, 1, 3) + "  " + _
             "Y1 = " + Dformat(Y1, 1, 3) + Chr(13) + _
             "X2 = " + Dformat(X2, 1, 3) + "  " + _
             "Y2 = " + Dformat(Y2, 1, 3)
      Call avMsgBoxInfo(aMsg, "Sample Exercise")
   End If
'
'  ---
'  ---Example #2
'  ---Sample illustrating how to create a dBase Table, and perform
'  ---various table editing operations.
'  ---
'
'  ---Define the name of the table to be created
   sTblName = "table1.dbf"
'
'  ---Define the full pathname of the table
   sTblPthName = "c:\temp\" + sTblName
'
'  ---Create a dBase table
   Set pTable = avVTabMakeNew(sTblPthName, "dbase")
'



Chapter 5 Theme and Table Avenue Wraps 5-83

'  ---Make sure the table was actually created.  It is possible that
'  ---the table was not created:
'  ---(a) due to certain restrictions that may have been imposed on
'  ---    the operating system by its administrator, or
'  ---(b) because the table may exist on the disk.
   If (pTable Is Nothing) Then
'     ---The table was not created.  Display an error message
      MsgBox "Error in creating table: " + sTblName
'
'     ---Check if the table exists in the disk.  If so remove it.
      If (avFileExists(sTblPthName)) Then
         MsgBox "Table: " + sTblPthName + " exists"
'        ---Check if the table exists in the map.  If so, remove it.
         aIndex = avFindDoc(sTblName)
         If (aIndex <> -1) Then
'           ---Remove the table from the map
            Call avRemoveDoc(sTblName)
            MsgBox "Table: " + sTblPthName + " removed from TOC"
         End If
'        ---Delete the table from disk
         iok = avDeleteDS(sTblPthName)
         If (iok = 0) Then
            MsgBox "Table: " + sTblPthName + " deleted " + CStr(iok)
         Else
            MsgBox "Error deleting table"
         End If
      Else
         MsgBox "Table: " + sTblName + " does not exist" + _
                Chr(13) + "and could not create the table"
      End If
'
'  ---Handle the case when the table is created
   Else
      MsgBox "Table: " + sTblName + " created"
'
'     ---Add the table to the map
      iok = avAddDoc(pTable)
      MsgBox "Table: " + sTblName + " added to TOC"
'
'     ---Add three records to the table
      iRec = avAddRecord(pmxDoc, sTblName)
      iRec = avAddRecord(pmxDoc, sTblName)
      iRec = avAddRecord(pmxDoc, sTblName)
      MsgBox "3 records added to " + sTblName
'
'     ---Create three fields that will be added to the table
      Set pFld1 = avFieldMake("StringF", "vchar", 20, 0)
      Set pFld2 = avFieldMake("DoubleF", "double", 12, 4)
      Set pFld3 = avFieldMake("LongF", "long", 10, 0)

SAM PL E CODE



5-84 Avenue Wraps

SAM PL E CODE '
'     ---Add the fields to a collection
      Call CreateList(fldList)
      fldList.Add pFld1
      fldList.Add pFld2
      fldList.Add pFld3
'
'     ---Add the fields collection to the table
      iok = avAddFields(pmxDoc, sTblName, fldList)
'
'     ---Get the attribute table for the VTab
      Call avGetVTab(pmxDoc, sTblName, theVTab)
'
'     ---Check to see whether the table is editable or not.
'     ---If not, make it so.
      If (Not avIsEditable(sTblName)) Then
         MsgBox "Table: " + sTblName + " is not editable"
'
'        ---Make the table editable
         Call avSetEditable(pmxDoc, sTblName, True)
         If (avIsEditable(sTblName)) Then
            MsgBox "Table: " + sTblName + " is now editable"
         End If
'
'        ---Store a value in the table, under a specific field,
'        ---for all three records that were added
         col = theVTab.FindField("StringF")
'
'        ---Make sure the field was found (it exists), a value of -1
'        ---for a field index denotes the field does not exist
         if (col <> -1)then
'           ---Store a value in the table for all three records
'           ---that were added. The "StoreRec" argument in the call
'           ---to avSetValue indicates that the record is to be
'           ---written to disk, if this call is not made the user
'           ---will not see the "test string" or any of the other
'           ---values in thedatabase (Note, the call to avSetValue
'           ---with the "StoreRec"argument should be made once,
'           ---after all other avSetValue calls have been made for
'           ---a record)
            Call avSetValue(pmxDoc, sTblName, col, 0, "test string")
            Call avSetValue(pmxDoc, sTblName, col, 0, "StoreRec")
            Call avSetValue(pmxDoc, sTblName, col, 1, "string 2")
            Call avSetValue(pmxDoc, sTblName, col, 1, "StoreRec")
            Call avSetValue(pmxDoc, sTblName, col, 2, "third string")
            Call avSetValue(pmxDoc, sTblName, col, 2, "StoreRec")
         End If
'



Chapter 5 Theme and Table Avenue Wraps 5-85

'        ---Get the field index value for the DoubleF field
         col = theVTab.FindField("DoubleF")
'
'        ---Store values for specific records
         Call avSetValue(pmxDoc, sTblName, col, 0, 14.3456)
         Call avSetValue(pmxDoc, sTblName, col, 0, "StoreRec")
         Call avSetValue(pmxDoc, sTblName, col, 1, 24.3456)
         Call avSetValue(pmxDoc, sTblName, col, 1, "StoreRec")
         Call avSetValue(pmxDoc, sTblName, col, 2, 34.3456)
         Call avSetValue(pmxDoc, sTblName, col, 2, "StoreRec")
'
'        ---Display the precision of the field just populated
         nDigits = avGetPrecision(theVTab, col)
         MsgBox "Digits right of Decimal for DoubleF = " + _
                                                         CStr(nDigits)
'
'        ---Display the field type of the field just populated
         Set pField = theVTab.Field(col)
         aType = avFieldGetType(pField)
         MsgBox "DoubleF field type = " + CStr(aType)
'
'        ---Get a list of the record IDs for the VTab
         Call avGetVTabIDs(pmxDoc, sTblName, idList)
'
'        ---Sum the values in the DoubleF field for all records
         aTotal = 0#
         For jRec = 1 To idList.Count
'            ---Extract a record ID from the list
             rec = idList.Item(jRec)
'            ---Get the IRow interface for the record
             Set pRow = pTable.GetRow(rec)
'            ---Extract the value for the DoubleF field
             aVal = pRow.Value(col)
'            ---Add the value to the total
             aTotal = aTotal + aVal
         Next
         MsgBox "Total for DoubleF = " + Dformat(aTotal, 1, 4)
'
'        ---Commit the modifications to the disk
         Call avSetEditable(pmxDoc, sTblName, False)
'
'        ---Determine the number of records in the table
         nRec = avGetNumRecords(pmxDoc, sTblName)
         MsgBox "Number of records in " + sTblName + " = " + _
                                                         CStr(nRec)
'
'        ---Select all of the records in the table
         Call avSetAll(pmxDoc, sTblName, sel)
         MsgBox CStr(sel.Count) + " records selected (all)"

SAM PL E CODE



5-86 Avenue Wraps

SAM PL E CODE '
'        ---Clear the selection
         Call avClearSelection(pmxDoc, sTblName)
         Call avGetSelection(pmxDoc, sTblName, sel)
         MsgBox CStr(sel.Count) + " records selected (none)"
'
'        ---Select the second and third records in the table
         Call avBitmapSet(pmxDoc, sTblName, 1)
         Call avBitmapSet(pmxDoc, sTblName, 2)
         Call avGetSelection(pmxDoc, sTblName, sel)
         MsgBox CStr(sel.Count) + " records selected "
'
'        ---Clear the second record from the selection
         Call avGetSelectionClear(pmxDoc, sTblName, 1)
         MsgBox "1 selected record deselected"
'
'        ---Start editing on the table
         Call avSetEditable(pmxDoc, sTblName, True)
'
'        ---Add 16 records to the table
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         iRec = avAddRecord(pmxDoc, sTblName)
         MsgBox "multiple records added"
'
'        ---Clear the selection set for the table
         Call avClearSelection(pmxDoc, sTblName)
'
'        ---Select two records
         Call avBitmapSet(pmxDoc, sTblName, 0)
         Call avBitmapSet(pmxDoc, sTblName, 1)
         MsgBox "two records selected"
'
'        ---Delete the selected records in the table
         Call avRemoveRecord(pmxDoc, sTblName, -1)
         MsgBox "two records deleted"



Chapter 5 Theme and Table Avenue Wraps 5-87

'
'        ---Stop editing on the table
         Call avSetEditable(pmxDoc, sTblName, False)
      End If
   End If
'
'  ---Get the attribute table
   Call avGetVTab(pmxDoc, sTblName, theVTab)
'
'  ---Make sure the table exists
   If (Not theVTab Is Nothing) Then
'
'     ---Make the table editable
      Call avSetEditable(pmxDoc, sTblName, True)
'
'     ---Build an arbitrary calculation string
      col = theVTab.FindField("LongF")
      nRec = avGetNumRecords(pmxDoc, sTblName)
      aCalcString = "([DoubleF] - " + CStr(nRec) + ")"
'
'     ---Apply a Calculation to two selected records
      Call avClearSelection(pmxDoc, sTblName)
      Call avBitmapSet(pmxDoc, sTblName, 0)
      Call avBitmapSet(pmxDoc, sTblName, 1)
      iok = avCalculate(pmxDoc, sTblName, aCalcString, col)
      MsgBox "2 records applied a calculation"
'
'     ---Apply a new Calculation to one selected record
      Call avClearSelection(pmxDoc, sTblName)
      Call avBitmapSet(pmxDoc, sTblName, 2)
      aCalcString = "([DoubleF] - 10)"
      iok = avCalculate(pmxDoc, sTblName, aCalcString, col)
      MsgBox "1 record applied a calculation"
'
'     ---Stop the editor
      Call avSetEditableTheme(pmxDoc, Null, Null)
'
'     ---Apply a Query to the table
      aQueryString = "LongF = 0.0"
      Call avQuery(pmxDoc, sTblName, aQueryString, sel, "NEW")
      Call avGetSelection(pmxDoc, sTblName, sel)
      MsgBox CStr(sel.Count) + " records selected"
'
'     ---Check if the Summary table exists in the TOC
      aIndex = avFindDoc("sumTable")
      If (aIndex <> -1) Then
         Call avRemoveDoc("sumTable")
         MsgBox "sumTable removed from TOC"
      End If

SAM PL E CODE



5-88 Avenue Wraps

SAM PL E CODE       If (avFileExists("sumTable.dbf")) Then
         Call avFileDelete("sumTable.dbf")
         MsgBox "sumTable deleted from disk"
      End If
'
'     ---Define the name of the summary table to be created
      sumTblName = "sumTable"
'
'     ---Summarize the selected records in the table based upon the
'     ---LongF field.
'     ---The default operation codes will be used.
'     ---That is why fieldList1 and sumryList2 are empty colections.
      Call CreateList(fieldList1)
      Call CreateList(sumryList2)
      Set pSTable = avSummarize(pmxDoc, sTblName, _

                         sumTblName, "dBase", UCase("LongF"), _
                  fieldList1, sumryList2)

'
'     ---Check if the table could not be summarized
      If (pSTable Is Nothing) Then
         MsgBox "Error in summarizing " + sTblName
'     ---Handle case when the table was summarized without error
      Else
         iok = avAddDoc(pSTable)
         MsgBox "Summary table: " + sumTblName + " added to TOC"
      End If
'
'  ---Handle case when table does not exist
   Else
      MsgBox "Table: " + sTblName + " does not exist"
   End If
'


