
CHAPTER 8
G
E
O
M
E
T
R
I
C

R
O
U
T
I
N
E
S

GEOM ET R IC ROU T IN ES
A V EN U E W RAPS

A
V
E
N
U
E

W
R
A
P
S

his chapter contains Avenue Wraps that enable the programmer to (a) create and/or
retrieve geometric features such points, multipoints, lines and polygons, and (b) to
intersect, merge or union two feature shapes. These Avenue Wraps include theT

following:

◗ avaClassMake To create a feature object from a point list, 8-5
as per Figure 8-1

◗ avAsList To create a list containing the points that 8-6
comprise a feature object, as per Figure 8-2

◗ avAsList2 To create a list containing the points that 8-7
comprise a feature object, as per Figure 8-3

◗ avAsList3 To create a list containing the points that 8-8
comprise a geometry object, as per Figure 8-3

◗ avAsPolygon To convert input into polygon geometry 8-13

◗ avClean To verify and enforce the correctness of a shape 8-27

◗ avCircleMakeXY To create a circle from the coordinates of its 8-13
center and its radius

◗ avHasM To check if a geometry object has a Z attribute 8-23

◗ avHasZ To check if a geometry object has a Z attribute 8-23

◗ avIntersects To check if two shapes intersect each other 8-28

8-2 Avenue Wraps

◗ avIsWithin To check if one shape is within a specified 8-30
distance of another shape

◗ avMultipointMake To create a multipoint object from a list of points 8-14

◗ avPlAsList To create a point list from a geometry object, 8-8
as per Figure 8-2

◗ avPlAsList2 To create a point list from a geometry object, 8-9
as per Figure 8-1

◗ avPlFindVertex To find the vertex of a multi-point, line or 8-9
polygon, as per Figure 8-1, closest to a location

◗ avPlGet3Pt To get three points from a point list for a 8-10
specific part in a feature, as per Figure 8-1

◗ avPlModify To modify a specific part in a point list, 8-11
as per Figure 8-1

◗ avPointIDMake To create a point object with an ID value 8-14

◗ avPointMake To create a point object from coordinates 8-15

◗ avPointMMake To create a point object with a M value 8-15

◗ avPointSetID To assign an ID to a point object 8-16

◗ avPointSetM To assign a M value to a point object 8-16

◗ avPointSetZ To assign a Z value to a point object 8-17

◗ avPointZMake To create a point object with a Z value 8-17

◗ avPolygonMake To create a polygon object from a point list 8-18
as per Figure 8-2

◗ avPolygonMake2 To create a polygon object from a point list 8-18
as per Figure 8-1

◗ avPolyline2Pt To create a two-point polyline from coordinates 8-19

Chapter 8 Geometric Routines Avenue Wraps 8-3

◗ avPolylineMake To create a polyline object from a point list 8-19
as per Figure 8-2

◗ avPolylineMake2 To create a polyline object from a point list 8-19
as per Figure 8-1

◗ avRectMake4Pt To create a polygon given the coordinates of 8-20
the four corners comprising the rectangle

◗ avRectMakeXY To create a polygon given the coordinates of 8-21
two opposite corners of a rectangle

◗ avReturnArea To get the area of a geometry 8-24

◗ avReturnCenter To get the centroid of a geometry 8-24

◗ avReturnDifference To subtract one shape from another shape to 8-29
form a new shape

◗ avReturnIntersection To intersect two shapes to form a new shape 8-29

◗ avReturnLength To get the length of a geometry 8-25

◗ avReturnMerged To merge two shapes to form a new shape 8-30

◗ avReturnUnion To union two shapes to form a new shape 8-31

◗ avSplit To split a shape using a second shape as a 8-31
splitter

◗ avUnion To union two or more geometry objects to 8-32
form a new geometry object

◗ GetShape To create a list containing the coordinates of 8-12
the points that comprise a feature

◗ Sample Code Code examples on how to perform various 8-33
shape editing operations

The source listing of each of the above Avenue Wraps may be found in Appendix D of this
publication.

8-4 Avenue Wraps

Chapter 8 Geometric Routines Avenue Wraps 8-5

8.1 General Geometric Avenue Wraps

8.1.1 Subroutine avaClassMake
This subroutine enables the programmer to create a point, polyline or polygon
type geometry object given a collection of points (shapeList) and the desired
object type (aClass). In using this subroutine, note the following:
1. The given argument aClass specifies the desired object type, and its

numeric value indicates the following object type to be created:
11 for PolyLineM 31 for PolyLineM and PolyLineZ
12 for PolyLineZ 32 for PolygonM and PolygonZ
13 for PolygonM 33 for PointM and PointZ
14 for PolygonZ 34 for MultiPointM and MultiPointZ
15 for PointM 41 for PolyLine
16 for PointZ 42 for Polygon
17 for MultiPointM 43 for Point
18 for MultiPointZ 44 for MultiPoint

2. The given argument shapeList is a collection comprised of the following
items: nParts / nPoints / xPt / yPt / zPt / mPt / idPt
where: nParts / nPoints / idPt are declared as long integer numbers

denoting the number of parts, number of points in a part and
identification number of a point,

and: xPt / yPt / zPt / mPt are declared as double precision floating
numbers denoting the x, y and z coordinates, and the measure
of a point.

3. As an example of the composition of the shapeList collection, consider
a multi-point, polyline or polygon comprised of three parts, the first
having three points, the second two points and the third two points. The

G E N ERA L
G EOM E T RY

Figure 8-1 Composition of Sample shapeList Collection - avaClassMake

Part 1 Part 2 Part 3

3 (Number of Parts)
3 (Number of Points in Part 1) 2 (Points in Part 2) 2 (Points in Part 3)
x11 x12 x13 x21 x22 x31 x32
y11 y12 y13 y21 y22 y31 y32
z11 z12 z13 z21 z22 z31 z32
m11 m12 m13 m21 m22 m31 m32
idPt11 idPt12 idPt13 idPt21 idPt22 idPt31 idPt32

8-6 Avenue Wraps

contents of shapeList would then be as shown in Figure 8-1, with the first
suffix indicating the part, and the second indicating the point number.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avaClassMake(aClass, shapeList, theFeat)

GIVEN: aClass = the type of special feature. See Note 1 above.
shapeList = the list of points comprising the feature

RETURN: theFeat = the special feature

The given and returned variables should be declared where first called as:
Dim aClass As Integer
Dim shapeList As New Collection
Dim theFeat As IPoint, IMultiPoint, IPolyline, or IPolygon

8.1.2 Subroutine avAsList
This subroutine enables the programmer to create a collection of points that
comprise a point, polyline, polygon or multi-point using the IFeature inter-
face. The composition of the resultant collection (shapeList) is shown in
Figure 8-2, which represents a collection of collections of points, each of last
said collections representing a part of the specified feature (theFeature).

The corresponding Avenue request is:
shapeList = theFeature.AsList

The call to this Avenue Wrap is:
Call avAsList(theFeature, shapeList)

GIVEN: theFeature = feature to be processed

RETURN: shapeList = the shape's list of list of points

The given and returned variables should be declared where first called as:
Dim theFeature As IFeature
Dim shapeList As New Collection

G E N ERA L
G EOM E T RY

a v a C la ssM a ke

a v A sL ist

Chapter 8 Geometric Routines Avenue Wraps 8-7

8.1.3 Subroutine avAsList2
This subroutine enables the programmer to create a collection of points that
comprise a polyline or polygon feature. The composition of the resultant
collection (shapeList) is shown in Figure 8-3(a).

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avAsList2(theFeature, shapeList)

GIVEN: theFeature = feature to be processed

RETURN: shapeList = the shape's list of points and/or parts

The given and returned variables should be declared where first called as:
Dim theFeature As IFeature
Dim shapeList As New Collection

G E N ERA L
G EOM E T RY

a v A sL ist2

Figure 8-3(a) Composition of Sample shapeList Collection - avaClassMake

Part 1 Part 2 Part 3

3 (Number of Parts)

3 (Number of Points in Part 1) 2 (Points in Part 2) 2 (Points in Part 3)

Point 1 Point 2 Point 3 Point 1 Point 2 Point 1 Point 2

Figure 8-2 Composition of Sample shapeList Collection - avAsList

Collection of
Points of Part 1

Collection of
Points of Part 2

Collection of
Points of Part 3

Point 1 Point 2 Point 3 Point 1 Point 2 Point 1 Point 2

List of List of Points for all Parts comprising the Feature

8-8 Avenue Wraps

8.1.4 Subroutine avAsList3
This subroutine enables the programmer to create a collection of points that
comprise a polyline or polygon geometry object. The composition of the
resultant collection (shapeList) is shown in Figure 8-3(a).

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avAsList3(theGeometry, shapeList)

GIVEN: theGeometry = feature to be processed

RETURN: shapeList = the shape's list of points and/or parts

The given and returned variables should be declared where first called as:
Dim theGeometry As IGeometry
Dim shapeList As New Collection

8.1.5 Subroutine avPlAsList
This subroutine enables the programmer to create a collection of points from
a geometry object. The composition of the resultant collection (shapeList)
is shown in Figure 8-2. This routine can be used for point, polyline, polygon
and multi-point features. This subroutine is identical to avAsList except that
is operates on an IGeometry object rather than an IFeature object.

The corresponding Avenue request is:
shapeList = pFeatureGeom.AsList

The call to this Avenue Wrap is:
Call avPlAsList(pFeatureGeom, shapeList)

GIVEN: pFeatureGeom = geometry object to be processed

RETURN: shapeList = list of list of points comprising the geometry

The given and returned variables should be declared where first called as:
Dim pFeatureGeom As IGeometry
Dim shapeList As New Collection

G E N ERA L
G EOM E T RY

a v A sL ist3

a v PlA sL ist

Chapter 8 Geometric Routines Avenue Wraps 8-9

a v PL Find V ertex

G E N ERA L
G EOM E T RY

8.1.6 Subroutine avPlAsList2
This subroutine enables the programmer to create a collection of points from
a geometry object. The composition of the resultant collection (shapeList)
is shown in Figure 8-1. This routine can be used for point, polyline, polygon
and multi-point features.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avPlAsList2(theLine, shapeList)

GIVEN: theLine = geometry object to be processed

RETURN: shapeList = list of points comprising the geometry

The given and returned variables should be declared where first called as:
Dim theLine As IGeometry
Dim shapeList As New Collection

8.1.7 Subroutine avPlFindVertex
This subroutine enables the programmer to find the vertex within a multi-
point, polyline or polygon feature that matches a given location or is the
closest to a given location.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avPlFindVertex(ipmode, elmntList, X, Y, thePart, thePt)

GIVEN: ipmode = the mode of operation
0 : find the first vertex matching a location
1 : find the vertex closest to a location

elmntList = list of points comprising the feature, see Figure
8.1

X, Y = coordinates of the location nearest which a
vertex is to be compared with

RETURN: thePart = the part of the polyline. Part numbers begin at
zero (0), not one (1)

a v PlA sL ist2

8-10 Avenue Wraps

G E N ERA L
G EOM E T RY

thePt = the sequential point number (starting at 1) in
the part (thePart) nearest to the given location
(X, Y).

The given and returned variables should be declared where first called as:
Dim ipmode As Integer
Dim elmntList As New Collection
Dim X, Y As Double
Dim thePart, thePt As Long

8.1.8 Subroutine avPlGet3Pt
This subroutine enables the programmer to get the coordinates of three
points from a specific part in a specified collection of a feature point. The
composition of the given point collection (shapeList) is as shown in Figure
8.1. The Avenue Wrap avPlAsList2 may be used to extract this collection if
it is not known by any other means.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avPlGet3Pt(shapeList, thePart, X1, Y1, XM, YM, X2, Y2)

GIVEN: shapeList = list of points comprising the feature
thePart = the part of the polyline. Part numbers begin at

zero (0), not one (1)

RETURN: X1, Y1 = start point coordinates of part
XM, YM = mid point coordinates of part
X2, Y2 = end point coordinates of part

The given and returned variables should be declared where first called as:
Dim shapeList As New Collection
Dim thePart As Long
Dim X1, Y1, XM, YM, X2, Y2 As Double

a v PL G et3Pt

Chapter 8 Geometric Routines Avenue Wraps 8-11

a v PlM od ify

G E N ERA L
G EOM E T RY

8.1.9 Subroutine avPlModify
This subroutine enables the programmer to modify a specific part in a
specified collection of a feature. The composition of the given point
collection (shapeList) is as shown in Figure 8.1. The Avenue Wrap avPlAsList2
may be used to extract this collection if it is not known by any other means.
In using this subroutine, note the following:
1. The new collection to be created (newList) does not replace the given

collection ShapeList. ShapeList remains unchanged. To replace ShapeList
with newList use the CopyList Avenue Wrap.

2. This subroutine has no effect on the graphic representation of the
feature.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avPlModify(ipmode, shapeList, thePart, iPt, X, Y, Z, newList)

GIVEN: ipmode = mode of operation. Numeric value to denote:
0 = change coordinates of given point iPt
1 = insert new point after given point iPt
2 = delete given point

shapeList = list of points comprising the feature
thePart = the part of the polyline. Part numbers begin at

zero (0), not one (1)
iPt = point number (starting at 1) in the part to be

processed. If it is 0, then the last point in the
part will be processed.

X, Y, Z = coordinates of the new point

RETURN: newList = new list of points comprising the feature

The given and returned variables should be declared where first called as:
Dim ipmode As Integer
Dim shapeListAs New Collection
Dim thePart, iPt As Long
Dim X, Y, Z As Double
Dim newList As New Collection

8-12 Avenue Wraps

8.1.10 Subroutine GetShape
This subroutine enables the programmer to obtain information describing a
feature, which consists of (a) the feature type, (b) a list containing the
coordinates of the points that comprise a feature and (c) the length of the
feature.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call GetShape(elmntTheme, elmntRecrd, _

 shapeType, shapeList, shapeDist)

GIVEN: elmntTheme = theme of the feature
elmntRecrd = shape's list of points and/or parts

RETURN: shapeType = shape type enumerator
shapeList = shape's list of points and/or parts
shapeDist = ArcView length of the shape in map units

The given and returned variables should be declared where first called as:
Dim elmntTheme As Variant
Dim elmntRecrd As Long
Dim shapeType As esriGeometryType
Dim shapeList As New Collection
Dim shapeDist As Double

G etSha p e

G E N ERA L
G EOM E T RY

Chapter 8 Geometric Routines Avenue Wraps 8-13

8.2 Geometric Feature Creation Avenue Wraps

The routines in this section create the geometric attributes that comprise the indicated
geometric feature only. They do not create the graphic representation of the feature.

8.2.1 Function avAsPolygon
This function enables the programmer to change an IUnknown polygon
interface into an IGeometry polygon interface.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set thePolygon = avAsPolygon(pInput)

GIVEN: pInput = the IUnknown polygon interface to be con-
verted

RETURN: thePolygon = the IGeometry polygon interface

The given and returned variables should be declared where first called as:
Dim pInput As IUnknown
Dim thePolygon As IGeometry

8.2.2 Function avCircleMakeXY
This function enables the programmer to create a circle given the coordinates
of its center and its radius.

The corresponding Avenue request is:
theCircle = Circle.Make (aPoint, aRadius)

accepts as input an object (aPoint) rather than the X and Y coordinates of
the center point

The call to this Avenue Wrap is:
Set theCircle = avCircleMakeXY(xPt, yPt, rad)

GIVEN: xPt, yPt = X and Y coordinates of the circle's center
rad = radius of the circle

RETURN: theCircle = the curve feature

a v A sPolygon

a v C ircleM a keXY

G EOM E T RIC
FEAT U R E
C R E A T ION

8-14 Avenue Wraps

The given and returned variables should be declared where first called as:
Dim xPt, yPt, rad As Double
Dim theCircle As ICurve

8.2.3 Function avMultipointMake
This function enables the programmer to create a multipoint object from a list
of points.

The corresponding Avenue request is:
theMultiPoint = MultiPoint.Make (aPntList)

The call to this Avenue Wrap is:
Set theMultiPoint = avMultipointMake(aPntList)

GIVEN: aPntList = list of point (IPoint) objects

RETURN: theMultiPoint = the multipoint feature

The given and returned variables should be declared where first called as:
Dim aPntList As New Collection
Dim theMultiPoint As IMultipoint

8.2.4 Function avPointIDMake
This function enables the programmer to create a point given its X and Y
coordinates and assign a user-specified ID value to the point.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set thePoint = avPointIDMake(xPt, yPt, anID)

GIVEN: xPt = X coordinate of point
yPt = Y coordinate of point
anID = ID value to be assigned to the point

RETURN: thePoint = the point feature

The given and returned variables should be declared where first called as:
Dim xPt As Double, yPt As Double, anID As Long
Dim thePoint As IPoint

a v M ultip ointM a ke

G EOM E T RIC
FEAT U R E
C R E A T ION

a v PointIDM a ke

Chapter 8 Geometric Routines Avenue Wraps 8-15

G EOM E T RIC
FEAT U R E
C R E A T ION

8.2.5 Function avPointMake
This function enables the programmer to create a point given its X and Y
coordinates.

The corresponding Avenue request is:
thePoint = Point.Make (xPt, yPt)

The call to this Avenue Wrap is:
Set thePoint = avPointMake(xPt, yPt)

GIVEN: xPt = X coordinate of point
yPt = Y coordinate of point

RETURN: thePoint = the point feature

The given and returned variables should be declared where first called as:
Dim xPt, yPt As Double
Dim thePoint As IPoint

8.2.6 Function avPointMMake
This function enables the programmer to create a point given its X and Y
coordinates and assign a user-specified M value to the point.

The corresponding Avenue request is:
thePoint = PointM.Make (xPt, yPt, anM)

The call to this Avenue Wrap is:
Set thePoint = avPointMMake(xPt, yPt, anID)

GIVEN: xPt = X coordinate of point
yPt = Y coordinate of point
anM = M value to be assigned to the point

RETURN: thePoint = the point feature

The given and returned variables should be declared where first called as:
Dim xPt As Double, yPt As Double, anM As Double
Dim thePoint As IPoint

a v PointM a ke

a v PointM M a ke

8-16 Avenue Wraps

8.2.7 Function avPointSetID
This function enables the programmer to assign a user-specified ID value to
a point object. Note that the given point object is modified by this procedure.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set thePoint = avPointSetID(thePoint, anID)

GIVEN: thePoint = the point feature to be modified
anID = ID value to be assigned to the point

RETURN: thePoint = the modified point feature

The given and returned variables should be declared where first called as:
Dim thePoint As IPoint
Dim anID As Long

8.2.8 Function avPointSetM
This function enables the programmer to assign a user-specified M value to
a point object. Note that the given point object is modified by this procedure.

The corresponding Avenue request is:
thePoint.SetM (anM)

The call to this Avenue Wrap is:
Set thePoint = avPointSetM(thePoint, anM)

GIVEN: thePoint = the point feature to be modified
anM = M value to be assigned to the point

RETURN: thePoint = the modified point feature

The given and returned variables should be declared where first called as:
Dim thePoint As IPoint
Dim anM As Double

G EOM E T RIC
FEAT U R E
C R E A T ION

a v PointSetM

a v PointSetID

Chapter 8 Geometric Routines Avenue Wraps 8-17

8.2.9 Function avPointSetZ
This function enables the programmer to assign a user-specified Z value to
a point object. Note that the given point object is modified by this procedure.

The corresponding Avenue request is:
thePoint.SetZ (anZ)

The call to this Avenue Wrap is:
Set thePoint = avPointSetZ(thePoint, anZ)

GIVEN: thePoint = the point feature to be modified
anZ = Z value to be assigned to the point

RETURN: thePoint = the modified point feature

The given and returned variables should be declared where first called as:
Dim thePoint As IPoint
Dim anZ As Double

8.2.10 Function avPointZMake
This function enables the programmer to create a 3D point given its X, Y and
Z coordinates.

The corresponding Avenue request is:
thePoint = PointZ.Make (xPt, yPt, zPt)

The call to this Avenue Wrap is:
Set thePoint = avPointZMake(xPt, yPt)

GIVEN: xPt = X coordinate of point
yPt = Y coordinate of point
zPt = Z coordinate of point

RETURN: thePoint = the point feature

The given and returned variables should be declared where first called as:
Dim xPt As Double, yPt As Double, zPt As Double
Dim thePoint As IPoint

G EOM E T RIC
FEAT U R E
C R E A T ION

a v PointZM a ke

a v PointSetZ

8-18 Avenue Wraps

8.2.11 Function avPolygonMake
This function enables the programmer to create a polygon object from a given
collection of points, which collection is composed as per Figure 8-2. The last
point of said collection may or may not be a repetition of the first point. If it
is not, the function will force a closure to the first point.

The corresponding Avenue request is:
thePolygon = Polygon.Make(shapeList)

The call to this Avenue Wrap is:
Set thePolygon = avPolygonMake(shapeList)

GIVEN: shapeList = the list of list of points comprising the polygon

RETURN: thePolygon = the polygon object feature

The given and returned variables should be declared where first called as:
Dim shapeList As New Collection
Dim thePolygon As IPolygon

8.2.12 Function avPolygonMake2
This function enables the programmer to create a polygon object from a given
collection of points, which collection is composed as per Figure 8-1. The last
point of said collection may or may not be a repetition of the first point. If it
is not, the function will force a closure to the first point.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set thePolygon = avPolygonMake2(shapeList)

GIVEN: shapeList = the list of points comprising the polygon

RETURN: thePolygon = the polygon object feature

The given and returned variables should be declared where first called as:
Dim shapeList As New Collection
Dim thePolygon As IPolygon

G EOM E T RIC
FEAT U R E
C R E A T ION

a v PolygonM a ke2

a v PolygonM a ke

Chapter 8 Geometric Routines Avenue Wraps 8-19

8.2.13 Function avPolylineMake
This function enables the programmer to create a polyline object from a given
collection of points, which collection is composed as per Figure 8-2.

The corresponding Avenue request is:
theLine = Polyline.Make(shapeList)

The call to this Avenue Wrap is:
Set theLine = avPolylineMake(shapeList)

GIVEN: shapeList = the list of points comprising the polygon

RETURN: theLine = the polyline feature

The given and returned variables should be declared where first called as:
Dim shapeList As New Collection
Dim theLine As IPolyline

8.2.14 Function avPolylineMake2
This function enables the programmer to create a polyline object from a given
collection of points, which collection is composed as per Figure 8-1.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theLine = avPolylineMake2(shapeList)

GIVEN: shapeList = the list of points comprising the polygon

RETURN: theLine = the polyline feature

The given and returned variables should be declared where first called as:
Dim shapeList As New Collection
Dim theLine As IPolyline

8.2.15 Function avPolyline2Pt
This function enables the programmer to create a polyline given the X and
Y coordinates of two points.

The corresponding Avenue request is:

a v PolylineM a ke2

a v PolylineM a ke

G EOM E T RIC
FEAT U R E
C R E A T ION

8-20 Avenue Wraps

theLine = Polyline.Make({{X1 @ Y1, X2 @ Y2}})

The call to this Avenue Wrap is:
Set theLine = avPolyline2Pt(X1, Y1, X2, Y2)

GIVEN: X1, Y1 = X and Y coordinate of the start point
X2, Y2 = X and Y coordinate of the end point

RETURN: theLine = the polyline feature

The given and returned variables should be declared where first called as:
Dim X1, Y1, X2, Y2 As Double
Dim theLine As IPolyline

8.2.16 Function avRectMake4Pt
This function enables the programmer to create a rectangle given the X and
Y coordinates for four corners which comprise the rectangle. The direction
in which the corners are specified may be clockwise or counter-clockwise.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Set theRect = avRectMake4Pt(X1, Y1, X2, Y2, X3, Y3, X4, Y4)

GIVEN: X1, Y1 = X and Y coordinate of corner point 1
X2, Y2 = X and Y coordinate of corner point 2
X3, Y3 = X and Y coordinate of corner point 3
X4, Y4 = X and Y coordinate of corner point 4

RETURN: theRect = the rectangle (polygon) feature

The given and returned variables should be declared where first called as:
Dim X1, Y1, X2, Y2, X3, Y3, X4, Y4 As Double
Dim theRect As IPolygon

a v RectM a ke4Pt

G EOM E T RIC
FEAT U R E
C R E A T ION

a v Polyline2Pt

Chapter 8 Geometric Routines Avenue Wraps 8-21

8.2.17 Function avRectMakeXY
This function enables the programmer to create a rectangle given the X and
Y coordinates of two opposite corners.

The corresponding Avenue request is:
theRect = Rect.MakeXY(X1, Y1, X2, Y2)

The call to this Avenue Wrap is:
Set theRect = avRectMakeXY(X1, Y1, X2, Y2)

GIVEN: X1, Y1 = X and Y coordinate of the start point of a
diagonal

X2, Y2 = X and Y coordinate of the end point of a
diagonal

RETURN: theRect = the rectangle (polygon) feature

The given and returned variables should be declared where first called as:
Dim X1, Y1, X2, Y2 As Double
Dim theRect As IPolygon

a v RectM a keXY

G EOM E T RIC
FEAT U R E
C R E A T ION

8-22 Avenue Wraps

G EOM E T RIC
FEAT U R E
C R E A T ION

Chapter 8 Geometric Routines Avenue Wraps 8-23

8.3 Geometric Attributes Avenue Wraps

8.3.1 Function avHasM
This function enables the programmer to determine if a given geometry object
has an M attribute assigned to it. This function will handle point, multipoint,
polyline, polygon and envelope objects.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
hasM = avHasM(theGeom)

GIVEN: theGeom = the geometry to be processed

RETURN: hasM = true if the geometry has an M value assigned
to it, otherwise, false

The given and returned variables should be declared where first called as:
Dim theGeom As IGeometry
Dim hasM As Boolean

8.3.2 Function avHasZ
This function enables the programmer to determine if a given geometry object
has a Z attribute assigned to it. This function will handle point, multipoint,
polyline, polygon and envelope objects.

The corresponding Avenue request is:
hasZ = aShape.HasZ

The call to this Avenue Wrap is:
hasZ = avHasZ(theGeom)

GIVEN: theGeom = the geometry to be processed

RETURN: hasZ = true if the geometry has a Z value assigned to
it, otherwise, false

The given and returned variables should be declared where first called as:
Dim theGeom As IGeometry
Dim hasZ As Boolean

a v H a sM

G EOM E T RIC
A T T R IBU T E S

a v H a sZ

8-24 Avenue Wraps

G EOM E T RIC
A T T R IBU T E S

8.3.3 Function avReturnArea
This function enables the programmer to get the area of an IGeometry object.
Note that if an invalid geometry is specified, the function, avReturnArea, will
return zero.

The corresponding Avenue request is:
theArea = theGeom.ReturnArea

The call to this Avenue Wrap is:
theArea = avReturnArea(theGeom)

GIVEN: theGeom = the geometry to be processed

RETURN: theArea = the area of the geometry

The given and returned variables should be declared where first called as:
Dim theGeom As IGeometry
Dim theArea As Double

8.3.4 Function avReturnCenter
This function enables the programmer to get a point object representing the
center of an IGeometry object. Note that if an invalid geometry is specified,
the function, avReturnCenter, will return NOTHING.

The corresponding Avenue request is:
theCenter = theGeom.ReturnCenter

The call to this Avenue Wrap is:
Set theCenter = avReturnCenter(theGeom)

GIVEN: theGeom = the geometry to be processed

RETURN: theCenter = the centroid of the geometry

The given and returned variables should be declared where first called as:
Dim theGeom As IGeometry
Dim theCenter As IPoint

a v ReturnCenter

a v ReturnArea

Chapter 8 Geometric Routines Avenue Wraps 8-25

a v R eturnL ength

G EOM E T RIC
A T T R IBU T E S

8.3.5 Function avReturnLength
This function enables the programmer to get the length of an IGeometry object
(length of a line, perimeter of a polygon or circumference of a circle). When
using this function, note the following:
1. For multi-part features, avReturnLength will return the total length,

which includes all parts.
2. If an invalid geometry is specified the function, avReturnLength, will

return zero.

The corresponding Avenue request is:
theLength = theGeom.ReturnLength

The call to this Avenue Wrap is:
theLength = avReturnLength(theGeom)

GIVEN: theGeom = the geometry to be processed

RETURN: theLength = the length as described above

The given and returned variables should be declared where first called as:
Dim theGeom As IGeometry
Dim theLength As Double

8-26 Avenue Wraps

G EOM E T RIC
A T T R IBU T E S

Chapter 8 Geometric Routines Avenue Wraps 8-27

8.4 Geometric Editing Avenue Wraps

Reference is made to the functions avReturnIntersection, avReturnMerged and
avReturnUnion presented below. The general operation of and differences between
these three functions are identified below. In perusing them, refer to Figure 8-3(b).
• All three operate on a given pair of similar geometry feature types of multipoint,

polyline or polygon.
• avReturnIntersection returns only those points, line segments or polygon areas

that are common to both given features.
• avReturnMerged returns only those points, line segments or polygon areas that

are not common to both given features.
• avReturnUnion returns all points, line segments or polygons except those that are

duplicate to both given features.

8.4.1 Function avClean
This function enables the programmer to verify and enforce the correctness
of a shape. In general, this means that duplicate points, vertices and line
segments are removed from the shape.

The corresponding Avenue request is:
CleanShape = aShape1.Clean

The call to this Avenue Wrap is:
Set CleanShape = avClean(aShape1)

GIVEN: aShape1 = shape to be cleaned

RETURN: CleanShape = new shape reflecting the cleaning

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry
Dim CleanShape As IGeometry

G EOM E T RIC
EDIT IN G

a v C lea n

8-28 Avenue Wraps

a v Intersects

G EOM E T RIC
EDIT IN G

a v IsW ithin

8.4.2 Function avIntersects
This function enables the programmer to check whether two shapes intersect
with each other.

The corresponding Avenue request is:
anIntersect = aShape1.Intersects(aShape2)

The call to this Avenue Wrap is:
anIntersect = avIntersects(aShape1, aShape2)

GIVEN: aShape1 = base shape
aShape2 = second shape intersected with the base shape

RETURN: anIntersect = intersection flag of the input objects. If:
true = shapes intersect, false = they do not

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim anIntersect As Boolean

8.4.3 Function avIsWithin
This function enables the programmer to determine if a shape (aShape1) is
within a distance of another shape (aShape2).

The corresponding Avenue request is:
isWithin = aShape1.IsWithin(aShape2, aDistance)

The call to this Avenue Wrap is:
isWithin = avIsWithin(aShape1, aShape2, aDistance)

GIVEN: aShape1 = geometry object to be checked
aShape2 = geometry object aShape1 is compared against
aDistance = distance value

RETURN: isWithin = flag denoting if aShape1 is close to aShape2. If:
true = it is, false = it is not

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim aDistance As Double
Dim isWithin As Boolean

Chapter 8 Geometric Routines Avenue Wraps 8-29

G EOM E T RIC
EDIT IN G

8.4.4 Function avReturnDifference
This function enables the programmer to subtract one shape from another to
form a new shape. The portion which is subtracted from the base shape is
the overlap with the second shape, see Figure 8-3(b). If there is no overlap,
the shape that is passed back will be identical to the base shape.

The corresponding Avenue request is:
NewShape = aShape1.ReturnDifference(aShape2)

The call to this Avenue Wrap is:
Set NewShape = avReturnDifference(aShape1, aShape2)

GIVEN: aShape1 = base shape
aShape2 = second shape whose overlap with the base

shape will be subtracted from the base shape.

RETURN: NewShape = new shape reflecting the difference, if any

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim NewShape As IGeometry

8.4.5 Function avReturnIntersection
This function enables the programmer to intersect two shapes to form a new
shape. If the shapes do not intersect the shape passed back, NewShape, will
be an empty shape. When dealing with polygon shapes make sure the
polygon is defined in a clockwise direction, if not, an intersection may not be
computed. If two polylines are to be intersected, the resultant shape will be
a point or multi-point shape (not the overlap of the two polylines).

The corresponding Avenue request is:
NewShape = aShape1.ReturnIntersection(aShape2)

The call to this Avenue Wrap is:
Set NewShape = avReturnIntersection(aShape1, aShape2)

GIVEN: aShape1 = base shape
aShape2 = second shape to be intersected with the base

shape

RETURN: NewShape = new shape reflecting the intersection, if any

a v Return
Intersection

a v Return
Difference

8-30 Avenue Wraps

G EOM E T RIC
EDIT IN G

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim NewShape As IGeometry

8.4.6 Function avReturnMerged
This function enables the programmer to merge two shapes together to form
a new shape. Refer to the commentary at the beginning of this section and
to Figure 8-3(b) regarding the given shapes and returned shape of this
Avenue Wrap.

Shape 2

Shape 1

Resultant
Shape

Resultant Shape

Shape 1

Shape 2

Shape 2

Shape 1

Resultant Shape

Duplicate Shapes

Legend for
Figure 8-3(b)

Original Shapes ReturnUnion ReturnIntersection ReturnMerged

Figure 8-3(b) Difference, Union, Intersection and Merging of Two Shapes

(A) (B) (C) (D)

Original Shapes ReturnDifference Original Shapes ReturnDifference

Chapter 8 Geometric Routines Avenue Wraps 8-31

G EOM E T RIC
EDIT IN G

The corresponding Avenue request is:
NewShape = aShape1.ReturnMerged(aShape2)

The call to this Avenue Wrap is:
Set NewShape = avReturnMerged(aShape1, aShape2)

GIVEN: aShape1 = base shape
aShape2 = second shape merged with the base shape

RETURN: NewShape = new shape reflecting the merging

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim NewShape As IGeometry

8.4.7 Function avReturnUnion
This function enables the programmer to union two shapes together to form
a new shape. Refer to the commentary at the beginning of this section and
to Figures 8-3(a) and 8-3(b) regarding the given shapes and returned shape
of this Avenue Wrap.

The corresponding Avenue request is:
NewShape = aShape1.ReturnUnion(aShape2)

The call to this Avenue Wrap is:
Set NewShape = avReturnUnion(aShape1, aShape2)

GIVEN: aShape1 = base shape
aShape2 = second shape to be united with the base shape

RETURN: NewShape = new shape reflecting the union

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim NewShape As IGeometry

8.4.8 Subroutine avSplit
This function enables the programmer to split a shape (line, polyline or
polygon) using a second shape (a line or polyline) as a splitter. A collection
of shapes is returned, which may be comprised of two or more shapes,
depending on the configuration of the shape to be split and the splitter shape.

a v ReturnUnion

a v ReturnM erged

8-32 Avenue Wraps

The corresponding Avenue request is:
shapeList = aShape1.Split(aShape2)

The call to this Avenue Wrap is:
Call avSplit(aShape1, aShape2, shapeList)

GIVEN: aShape1 = shape to be split
aShape2 = shape to be used as the split line

RETURN: shapeList = list of new shapes created as a result of the
splitting process

The given and returned variables should be declared where first called as:
Dim aShape1 As IGeometry, aShape2 As IGeometry
Dim shapeList As New Collection

8.4.9 Subroutine avUnion
This subroutine enables the programmer to union two or more shapes to form
a new shape. The programmer passes in a collection (list) of geometry objects.
All objects in the given collection (list) must be of the same type. This
procedure will handle point, multipoint, polyline and polygon objects.

The corresponding Avenue request is:
There is no corresponding Avenue request.

The call to this Avenue Wrap is:
Call avUnion(pMap, geomList, pNewGeom)

GIVEN: pMap = map to be processed
geomList = collection of geometry objects to be unioned

RETURN: pNewGeom = new shape reflecting the unioning

The given and returned variables should be declared where first called as:
Dim pMap As IMap
Dim geomList As New Collection
Dim pNewGeom As IGeometry

G EOM E T RIC
EDIT IN G

a v U nion

a v Sp lit

Chapter 8 Geometric Routines Avenue Wraps 8-33

8.5 Sample Code for Shape Editing

The example below demonstrates the use of the shape editing Avenue Wraps
presented in the previous section. Four sample tests are carried out: (a) splitting of a
polygon, (b) merging of two polygons, (c) intersection of two polygons, and (d) union
of two polygons. To use the sample code below, do the following:

? 1 Create a module with the ArcMap VBA Editor and load or key enter the sample
code below.

? 2 Go back to ArcMap and, using conventional ArcMap functionality, create
seven polygons and and one polyline. In drawing these features, intersect
the polyline with the first polygon that is drawn, and draw the other six
polygons as three pairs of overlapping polygons.

? 3 In drawing the polygons and polyline, following the drawing order shown
below:
(a) the polygon which is to be split by a polyline,
(b) the polyline to be used in splitting the polygon,
(c) the two polygons to be merged,
(d) the two polygons to be intersected, and
(e) the two polygons to be United.

? 4 Go back to the ArcMap Editor and execute the module with the sample code

by clicking at the tool. If less then seven features were selected, a

message will be displayed to this effect and the program will terminate, in
which case go back to Step 3 above. If more than seven polygons are selected,
only the first seven will be considered. The order of how the features are
processed is based upon the order in which they were created. That is why
the order of feature creation is important. Upon completion of each of the four
tests, a message will be displayed and the resultant shape of the operation
that was performed will be highlighted. At the end of the fourth pass, the
program will terminate.

? 5 If desired, go back to Step 2 above, and repeat the test by modifying the figures
that were drawn, and observe the results.

SA M PL E
CODE

8-34 Avenue Wraps

‘
‘ ---
‘ ---Sample code illustrating how to perform various shape
‘ ---editing operations.
‘ ---This sample requires that seven polygon features
‘ ---and one polyline feature be selected prior to
‘ ---executing this macro.
‘ ---The first selected polygon and the selected polyline
‘ ---features will be used in a split operation.
‘ ---The remaining selected polygons will be used to
‘ ---demonstrate the merging, intersecting and uniting
‘ ---operations.
‘ ----
‘
 Dim pMxApp As IMxApplication
 Dim pmxDoc As IMxDocument
 Dim pActiveView As IActiveView
 Dim pMap As IMap
 Dim selPG As ISelectionSet
 Dim selPL As ISelectionSet
 Dim selPGlist As New Collection
 Dim selPLlist As New Collection
 Dim iOpr As Integer
 Dim pFeatPG As IFeature
 Dim pFeatPL As IFeature
 Dim pGeomPG As IGeometry
 Dim pGeomPL As IGeometry
 Dim theOpr As String
 Dim pFeatPG1 As IFeature
 Dim pFeatPG2 As IFeature
 Dim pGeomPG1 As IGeometry
 Dim pGeomPG2 As IGeometry
 Dim shapeList As New Collection
 Dim mergedPoly As IGeometry
 Dim intrsPoly As IGeometry
 Dim unionPoly As IGeometry
 Dim i As Long
 Dim pg As IGeometry
 Dim pCurGraLyr1 As IGraphicsLayer
 Dim graPT As IElement
 Dim pSymbol As ISymbol
 Dim iIntrs As Boolean
‘
‘ ---Get the active view
 Call avGetActiveDoc(pMxApp, pmxDoc, pActiveView, pMap)
‘
‘ ---Get the selected polygons from the theme L_0pg
 Call avGetSelection(pmxDoc, “L_0pg”, selPG)

SA M PL E
CODE

Decla ra tion
Sta tem ents

G et the Docum ent
a nd the Polygon
Selections

Chapter 8 Geometric Routines Avenue Wraps 8-35

‘
‘ ---Get the selected polyline from the theme L_0pl
 Call avGetSelection(pmxDoc, “L_0pl”, selPL)
‘
‘ ---Get the OIDs for the selection sets
 Call avGetSelectionIDs(selPG, selPGlist)
 Call avGetSelectionIDs(selPL, selPLlist)
‘
‘ ---Note that at least seven polygons and one polyline
‘ ---must have been selected prior to invoking this
‘ ---subroutine
 If ((selPGlist.Count > 6) And (selPLlist.Count > 0)) Then
‘
‘ ---Perform 4 shape editing operations
‘ ---Loop 1 splits a polygon (selected polygon #1) using
‘ ---the selected polyline as a splitter.
‘ ---Loop 2 merges two polygons (selected polygons #2 and
‘ ---#3)
‘ ---Loop 3 intersects two polygons (selected polygons #4
‘ ---and #5)
‘ ---Loop 4 unites two polygons (selected polygons #6 and
‘ ---#7)
‘
 For iOpr = 1 To 4
‘
‘ ---Get the first selected polygon and the polyline
 If (iOpr = 1) Then
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(1), pFeatPG)
 Call avGetFeature(pmxDoc, “L_0pl”, _
 selPLlist.Item(1), pFeatPL)
‘ ---Get the geometries of the selected features
 Set pGeomPG = pFeatPG.Shape
 Set pGeomPL = pFeatPL.Shape
‘ ---Define the editing operation
 theOpr = “Split”
‘
‘ ---The other editing operations require two
‘ ---polygons, so get the next selected polygons
 Else
 If (iOpr = 2) Then
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(2), pFeatPG1)
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(3), pFeatPG2)
‘ ---Define the editing operation
 theOpr = “Merge”
 End If

SA M PL E
CODE

G et the OIDs
a ssocia ted w ith
the selections

G et the Fea tures
from the Selected

C ollections
for Sp litting

G et the Fea tures
from the Selected

C ollections
for M erging

8-36 Avenue Wraps

 If (iOpr = 3) Then
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(4), pFeatPG1)
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(5), pFeatPG2)
‘ ---Define the editing operation
 theOpr = “Intersect”
 End If
 If (iOpr = 4) Then
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(6), pFeatPG1)
 Call avGetFeature(pmxDoc, “L_0pg”, _
 selPGlist.Item(7), pFeatPG2)
‘ ---Define the editing operation
 theOpr = “Union”
 End If
‘ ---Get the geometries of the selected features
 Set pGeomPG1 = pFeatPG1.Shape
 Set pGeomPG2 = pFeatPG2.Shape
 End If
‘
‘ ---Split the polygon using the polyline
 If (iOpr = 1) Then
 Call avSplit(pGeomPG, pGeomPL, shapeList)
 End If
‘
‘ ---Merge two polygons together (will create a
‘ ---hole if the polygons overlap)
 If (iOpr = 2) Then
 Set mergedPoly = avReturnMerged(pGeomPG1, _
 pGeomPG2)
 Call CreateList(shapeList)
 shapeList.Add mergedPoly
 End If
‘
‘ ---Intersect two polygons (returns an empty shape
‘ ---if the polygons do not intersect)
 If (iOpr = 3) Then
 Set intrsPoly = avReturnIntersection(pGeomPG1, _
 pGeomPG2)
 Call CreateList(shapeList)
 shapeList.Add intrsPoly
 End If
‘
‘ ---Union two polygons
 If (iOpr = 4) Then
 Set unionPoly = avReturnUnion(pGeomPG1, _
 pGeomPG2)

SA M PL E
CODE

L oop 2
M erge T w o
Polygons

L oop 1
Sp lit a Polygon

L oop 3
Intersect T w o
Polygons

L oop 4
Union T w o
Polygons

G et the Fea tures
from the Selected
C ollections
for Intersecting

G et the Fea tures
from the Selected
C ollections
for Unioning

Chapter 8 Geometric Routines Avenue Wraps 8-37

 Call CreateList(shapeList)
 shapeList.Add unionPoly
 End If
‘
‘ ---Check if any new polygons were created. If so
‘ ---cycle thru them, and display each new polygon
‘ ---in red to indicat the shape of the new polygon.
‘ ---In addition, display in a message box the area
‘ ---of the polygon and the operation that was
‘ ---performed.
 If (shapeList.Count > 0) Then
 For i = 1 To shapeList.Count
‘ ---Grab a polygon from the list
 Set pg = shapeList.Item(i)
‘ ---Set the current active graphics layers as
‘ ---the basic graphics layer
 Call avSetGraphicsLayer(Null, pCurGraLyr1)
‘ ---Create a graphic polygon using the new
‘ ---polygon as its shape and assign a red
‘ ---fill to it
 Set graPT = avGraphicShapeMake(“FILL”, pg)
 Set pSymbol = avSymbolMake(“FILL”)
 Call avSymbolSetColor(“FILL”, pSymbol, _
 “RED”)
 Call avGraphicSetSymbol(“FILL”, graPT, _
 pSymbol)
‘ ---Add the graphic to the display
 Call avViewAddGraphic(graPT)
‘ ---Display in a message box the area of the
‘ ---new polygon and the operation that was
‘ ---performed
 If (iOpr <> 3) Then
 MsgBox theOpr + “ operation” + Chr(13) + _
 “Polygon “ + CStr(i) + “ Area = “ + _
 CStr(avReturnArea(pg))
 Else
‘ ---Determine if the polygons intersect
 iIntrs = avIntersects(pGeomPG1, pGeomPG2)
‘ ---In addition to the usual information,
‘ ---inform user whether the polygons
‘ ---intersect each other or not
 MsgBox theOpr + “ operation” + Chr(13) + _
 “Polygon “ + CStr(i) + “ Area = “ + _
 CStr(avReturnArea(pg)) + Chr(13) + _
 “Intersection = “ + CStr(iIntrs)
 End If
‘ ---Get rid of the graphic
 Call avRemoveGraphic(graPT)
 Next

SA M PL E
CODE

Inform user
a s to the

results of the
ed iting p rocess

8-38 Avenue Wraps

‘ ---Handle the case when and operation does not
‘ ---produce new polygons
 Else
 MsgBox theOpr + “ produced no new shapes”
 End If
 Next
‘
‘ ---Handle the case when not enough features selected for
‘ ---the various editing operations to be performed
 Else
 MsgBox “Not enough features selected”
 End If
‘

SA M PL E
CODE

